Hubble’s Law—17 Oct

- Hubble’s Law: More distant galaxies are moving away faster.
 Speed = H \times Distance
- Universe is expanding
- Universe started with a Big Bang
- Age of the universe

Hoag’s Galaxy

Coma Cluster

- NGC4881, central galaxy in Coma Cluster

Milky Way Galaxy
Hubble’s Law

- Velocity V is proportional to distance D
 - $V = H \times D$
- Demo: Let Coma & Hoag’s Galaxy move according to Hubble’s Law
 1. If Coma moves one meter, how much should Hoag move?
 a. 1 m
 b. 3 m
 c. $\frac{1}{3}$ m
 d. 9 m
 e. $\frac{1}{9}$ m

<table>
<thead>
<tr>
<th>Dist</th>
<th>Speed</th>
<th>Milky Way</th>
<th>Coma</th>
<th>Hoag’s Object</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 Mpc</td>
<td>0 km/s</td>
<td>0 km/s</td>
<td>6,000 km/s</td>
<td>18,000 km/s</td>
</tr>
<tr>
<td>100 Mpc</td>
<td>6,000 km/s</td>
<td>6,000 km/s</td>
<td>100 Mpc</td>
<td>300 Mpc</td>
</tr>
</tbody>
</table>

2. Hoag is 3 times as far as Coma. Is this still true in the future? Was this true in the past?
 - a. YY
 - b. YN
 - c. NY
 - d. NN

Hubble’s Law

- $V = H \times D$
- H’s Law => Universe began in a Big Bang
 - Universe was very dense
 - What became Milky Way was very close to what became Coma & Hoag’s Galaxy.
- Current physics can explain universe 10^{-16}s after Big Bang, when proto-Coma was 1 mm from proto-us.

3. If we are in Coma, would H’s Law apply?
 - a. Y
 - b. N
What does value of H imply?

- $V = H \times D$

4. What is the value of Hubble’s constant? Express your answer in km/s/Mpc

- $H = \frac{V}{D}$

 - $= \frac{30000 \text{ km/s}}{470 \text{ Mpc}} = 30000 \text{ km/s} / (470 \text{ Mpc})$

 - $= 64 \text{ km/s/Mpc}$

 - $= 64 \text{ km/s} / (3 \times 10^{19} \text{ km})$

 - $= 1 / (15 \text{ Byr})$

What does value of H imply?

- Write H’s law in more familiar form

 - $D = V \times (1/H)$

- $1/H = D/V$

 - $= (470 \text{ Mpc}) / 30000 \text{ km/s}$

 - $= 15 \text{ Byr}$

5. Some matter that was very near us soon after the Big Bang was moving at 30,000 km/s. How far has it moved in 1 Byr? Is 15 Byr?

Value of H implies age of universe

- Write H’s law in more familiar form

 - $D = V \times (1/H)$

- $1/H = D/V$

 - $= (470 \text{ Mpc}) / 30000 \text{ km/s}$

 - $= 15 \text{ Byr}$

 - Some matter that was very near us soon after the Big Bang was moving at 30,000 km/s.

 - The age of the universe is 15 Byr.
 - In 15 Byr, that matter has moved 470 Mpc and become part of a galaxy.
 - In 1 Byr, that matter has not moved far enough to be part of a galaxy. U is older than 1 Byr.

 - Be aware: We assumed matter does not speed up or slow down.
Summarizing questions

• Why does Hubble’s Law imply a Big Bang?
• Do aliens on another galaxy also observe galaxies to move according to H’s Law?
• If the motion of matter slows down, is the age of the universe longer or shorter than 1/H?