Light—January 24

• First homework:
 - http://angel.msu.edu
 - Register your clicker number.
 - Forget your clicker or your clicker doesn’t work?
 - You may turn in clicker answers on paper after class.
 - You may do this at most two times during the entire term.

• How to study for 1st exam
 - Be able to explain the clicker questions to a fellow student
 - Class is about important topics
 - Find a way to think about what was covered. Argue with someone.
 - You must read book for details
 - Do the quizzes on www.astronomyplace.com
 - Skip questions that we have not covered.

• Outline
 - Properties of Light
 - Newton Implies Kepler’s 3rd Law
 - Kepler’s Law of Equal Areas

Newton Implies Kepler’s 3rd Law

• Easier derivation: Assume orbit is a circle. Ignore numerical constants such as \(\pi \) or 2.
 - Newton’s Law of Gravity: Force between sun and planet
 \[F = \frac{G M m}{R^2} \]
 - Newton’s 2nd Law
 \[F = m a \]
 - \[\frac{G M m}{R^2} = m a \]
 - Velocity is approximately \(\frac{R}{P} \), where \(P \) is period. (It is exactly \(\frac{2\pi R}{P} \)).
 - Acceleration, change in velocity/time, is approximately \(\frac{R}{P^2} \).
 - \[\frac{G M}{R^2} = a = \frac{R}{P^2} \]
 - \(P^2 = \frac{R^3}{G M} \)
 - What did Newton learn about Kepler’s 3rd law that Kepler did not know?
 - Q1 Does \(P^2 = \frac{R^3}{G M} \), where \(P \) is the period in years and \(R \) is semi-major axis in AU apply to a planet in orbit around another star?
 a. Yes. Physical laws are universal.
 b. Yes. Gravity causes the velocity of any planet to change.
 c. No. Years apply only to earth.
 d. No. The other star may have a different mass.

Kepler’s 3rd Law

• \(P^2 = \frac{R^3}{G M} \)
• How can you use Kepler’s 3rd law to weigh Jupiter?
• This is how we weigh planets, stars, and galaxies.

• Accurate derivation
 - \[P^2 = \frac{4 \pi^2}{G} \left(\frac{R^3}{M_{\text{sun}} + m_{\text{planet}}} \right) \]
 - Mass is total mass = \(M_{\text{sun}} + m_{\text{planet}} \)

Kepler’s Law of Equal Areas

• Law of equal areas is conservation of angular momentum in Sun-planet system
 \[m \, \mathbf{v} \times \mathbf{r} = \text{constant} \]
 - smaller \(r \) \(\rightarrow \) larger \(v \)
 - Skater speeds up by bringing arms in
 - Planet speeds up when closer to sun
• Emmy Noether (about 1910) showed
 - Laws of physics are the same regardless of direction implies conservation of angular momentum

Kepler2 simulation
Light

- Almost all we about astronomy comes from analyzing light.
- What do you notice about the light of the globular cluster M10?
 - Color: Red stars are brighter than blue stars → Red stars are giants, about the size of the Earth’s orbit.
 - Spectra: M10 has much less oxygen (and other elements heavier than Li) than sun → M10 is very old, one of the first systems to have formed.
 - Spectra: M10 shows the speed of M10 is very fast compared to that of stars near the sun → orbits of globular clusters are long & thin, whereas sun’s is almost circular.

Globular Cluster M10

Wavelength, Frequency and Energy

- Wavelength $\lambda = \text{distance between successive crests}$.
 - m meter
 - nm nanometer (10^{-9} m)
 - Å angstrom (10^{-10} m)
- Wave moves at speed of light c.
- Frequency is rate at which crests pass.
 - $f = \frac{c}{\lambda}$, Cycles/second: Hertz
- Photon is the smallest amount of light.
- Energy of a photon $E = hf \equiv \frac{hc}{\lambda}$ (h = Planck’s constant)

The Electromagnetic Spectrum

- Light is given different names according to its wavelength λ.
- In visible passband, different λ = different color.
 - Blue = smaller λ
 - Red = larger λ
- Only visible light and radio waves pass freely through Earth’s atmosphere.

Thermal Radiation

(Blackbody Radiation)

- Heat up hot plate
 - It glows more brightly as it gets hotter
 - It changes color as it gets hotter

<table>
<thead>
<tr>
<th>Temperature</th>
<th>°K</th>
<th>°C</th>
<th>°F</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completely cold.</td>
<td>0</td>
<td>-273</td>
<td>-459</td>
<td>Does not emit light</td>
</tr>
<tr>
<td>Body temperature.</td>
<td>310</td>
<td>37</td>
<td>99</td>
<td>Infrared</td>
</tr>
<tr>
<td>Blowtorch.</td>
<td>4000</td>
<td>3727</td>
<td>7400</td>
<td>Red-hot</td>
</tr>
<tr>
<td>Blast furnace.</td>
<td>6000</td>
<td>5727</td>
<td>10,840</td>
<td>White-hot</td>
</tr>
<tr>
<td>Hotter still.</td>
<td>7500</td>
<td>7227</td>
<td>13,340</td>
<td>Blue-hot</td>
</tr>
</tbody>
</table>
Black-Body Spectrum

- Intensity distribution depends only on:
 - Temperature
 - Emissivity: Light absorbed/Light incident
 - Mirror: e=0
 - Black: e=1
- Characteristic shape:
 - Sharp drop towards higher energy.
 - Slow drop towards lower energy.
- Star is an approximate black body.
- Sun is an approximate 5800-K black body.
- The Big Bang is an exact 2.7-K black body.

- Peak wavelength given by Wien’s Law:
 - $\lambda_{\text{max}} = \frac{0.0027 \text{m-K}}{T}$
 - hotter objects have peak at smaller λ.
- Total energy emitted per second per unit surface area is given by Stefan-Boltzmann Law:
 - $E \propto T^4$
 - Increase with temperature is very steep: factor of 2 for a factor of 1.2 in temperature

Thermal Infrared Light

- Wavelength is 8,000-12,000 nm (8-12×10⁻⁴ m)
- An object with a temperature of 300K emits most of its light in the thermal infrared.
- Does infrared light show the same thing as visible light?