The Sun—March 2

- Test 2 is not graded yet.
- See me if you need provisional grade immediately.
- How does the sun produce energy?
- Inside the sun

How does the sun produce energy?

- Lord Kelvin (William Thomson) in Glasgow, Scotland in 1860s.
- Observations: Sun (2 x 10^30 kg) produces 4 x 10^26 watts for 4.5 Byrs.
- Batteries (chemical reactions)
 - 0.5 watts/battery => 8 x 10^26 batteries required. Battery lasts 40 hours.
 - Sun can shine for 100 years
 - Far too short.
- Kelvin has a better idea
 - Contraction of the sun
 - Led him to maintain that solar system is 100Myrs old, which is incorrect.

Gravitational contraction?

- Converts gravitational potential energy into kinetic energy
- Kinetic energy in a gas = heat
- Collisions between atoms convert heat to light
- Kelvin-Helmholtz contraction
 - To provide 4 x 10^26 watts
 - sun must contract by 40 meters per year
 - 40m x 2000 years of observations: undetectable!
 - Sun shrinking by half => shine for 80 million years.
 - 800,000 x better than batteries & chemical reactions.
 - But not good enough. We need > 4.5 billion years, 60 times longer.

We know the most about one star

- We know the most about the sun because we can see surface details. (Other stars are points of light.)
 - Magnetic fields, wind, flares
 - Seismology => sound waves probe interior
- How do we know?
 - Make observations
 - Make theories
 - Compute models
 - Do models agree with observations?
 - Repeat process

- How does the sun produce energy?
 - Question first asked in 19th century. Theories failed.
 - Bethe found answer in 1930s
 - Today: new questions of detail
How does the sun produce energy?

- Crisis: No solution with physics of 19th century.
- Einstein’s new theory (1906)
 - \(E = m c^2 \).
 - Energy = mass \times (speed of light)^2.
 - Energy can change into mass, and mass can change into energy.
- Changing a little mass produces a lot of energy
 - Speed of light \(c = 300,000 \text{ km/s} \).
 - Nitrogen in air moves at 0.1 km/s.
 - Air in blast furnace moves at 0.2 km/s
- Chemical reaction
 - Chemical: \(v=10\text{km/s} \) (two H atoms make H molecule)
 - \(E=m/1,000,000,000,000 \text{ c}^2 \). One part in billion of mass disappears and changes into energy.

Nuclear fusion

- \(4 \times ^1\text{H} \rightarrow ^4\text{He} + \text{neutrinos} + \text{energy} \)
 - 4 hydrogen nuclei fuse
 - One helium nucleus is produced
- Q: Why does RHS have less mass than LHS?
 a. You are not weighing the energy.
 b. Helium is a lighter gas.
 c. Some of the mass changed into energy.
 d. The balance is faulty.

Sun produces energy by nuclear fusion

- \(4 \times ^1\text{H} \rightarrow ^4\text{He} + \text{neutrinos} + \text{energy} \)
 - 4 hydrogen nuclei fuse
 - One helium nucleus is produced
 - 0.7% of mass becomes energy
 - Sun can potentially produce
 \(0.007 \times (2\times10^{30} \text{ kg}) \times (3\times10^8 \text{ m/s})^2 = 10^{45} \text{ Joules of energy} \)
 - Sun can shine for
 - \(10^{45} \text{ Joules}/(4\times10^{39} \text{ J/s})=100 \text{ Billion years} \)
 - Sun will actually last 10 Byrs, because 10% of mass is used before sun becomes a dead star.

Q: A hydrogen atom falling from 1 AU hits the sun at 300 km/s. How much of the mass is converted into energy?

a. 100%

b. 1/1000

c. 1/1,000,000

4 \(^1\text{H} \rightarrow ^4\text{He} + \nu \)

Lighter by 0.7%
Interior of the sun

- Use physics to construct models
- Energy is generated by nuclear fusion, which depends on temperature and composition.
- Energy move from center, where fusion occurs, to outside, where it radiates into space.
- Gas pressure holds the mass of the parts above.

[Fig. 10.3]

Radiative energy transport

Convection

Interior of the sun

- Use physics to construct models
- Energy is generated by nuclear fusion, which depends on temperature and composition.
- Energy move from center, where fusion occurs, to outside, where it radiates into space.
- Gas pressure holds the mass of the parts above.

[See Fig 10.2]