Hot-plate model of stars—March 14

- Test 2 will be "unhidden" on loncapa.msu.edu before end of day.
- Public viewing sessions at MSU campus observatory:
 - Fri & Sat, 9-11pm, if it is not cloudy.
 - Mar 18 & 19
 - Apr 15 & 16
 - May 13 & 14
 - 24-inch telescope in dome
 - small telescopes outside
- Game questions: 100% on hwk, 25% on test. How should homework be changed to make it more useful?
 - Study guide.
 - Write explanation for hwk.
 - If wording in unclear on test question, ask during test.

Observed properties of stars

- Mass
 - Measured in kg or M_\odot
 - $0.08-30$ M_\odot
- Surface temperature
 - 5800K for sun
 - 3000K for cool star
- Luminosity is amount of energy the star produces in a second
 - Watts=Joules/s or L for Betelgeuse
 - Flux or apparent brightness is amount of energy received from the star by a detector in a second
 - Depends on distance
 - Composition: abundances of elements.

Finding luminosity from flux

- We measure flux incident on detector on Earth
 - Energy received/unit time /unit area
- We want to know luminosity
 - Energy produced by star/unit time
- Q1: Suppose Betelgeuse is moved closer. S1: Its flux increases. S2: Its luminosity increases. Statements S1 & S2 are
 - a. TT
 - b. TF
 - c. FT
 - d. FF

Finding luminosity from flux

- We measure flux incident on detector on Earth
 - Energy/unit time /unit area
- We want to know luminosity
 - Energy/unit time
- We need to also know the distance D
 - For nearby stars, use method of parallax. (Read about parallax in 11.1)

\[
F = \frac{L}{4\pi D^2}
\]

\[
L = 4\pi D^2 F
\]
Hot-plate Model of a Star

- A hot plate emits light as a blackbody. The key parameters are:
 - Temperature
 - Area
- A star is a really hot and really big hot plate.
- Ingredients:
 - Radius: R. Area = $4\pi R^2$
 - Temperature: T
 - Distance: D

Q2: Should T, D, & R be in the numerator or denominator?

a. NNN
b. NND
c. NDN
d. DNN

Emitted energy per unit surface area \propto Wavelength \propto Energy

Hertzsprung-Russell (H-R) Diagram [p. 292]

- H-R plotted luminosity vs. surface temperature (1905) & discovered a surprise.
- Spectral class is a proxy for temperature
 - OBAFGKM. O is hottest
- Q3 Sirius A & Sirius B (companion of Sirius A) have about the same temperature. How can Sirius B be 10,000 times fainter?
 a. Sirius B is 100 times farther away.
 b. Sirius B is 100 times smaller
 c. Sirius A took away the mass
 d. Sirius A took away the light

[see Fig. 11.10]