Supernovae—March 23

- Where were the elements in the baby made?
 - Carbon was made and expelled by giants
 - Iron was made in massive stars and expelled by supernovae
- Supernova
 - Neutron star
 - Black hole
- Study guide for test 3

Guest star of 1054

- Records of Sung Dynasty
 - In the first year of the period Chih-ho, ... a guest star appeared several degrees SE of Thien-kuan. After more than a year it gradually became invisible—p564.
- Gas expelled in 1054AD, still glowing
- Other SN
 - 1572 Tycho
 - 1604 Kepler

Supernova 1987A

- Exploded in Large Magellanic Cloud
 - LMC is small galaxy that orbits our own Milky Way Galaxy.

Supernova remnants

- We expect one supernova in Milky Way every 25-100 yrs.

- Crab: 1,000 yrs old
- Cygnus Loop: 20,000 yrs old, 2500 LY away.
- IC 443: 8000 yrs old
Supernovae

• Explosion releases enormous energy
• Luminosity in photons temporarily exceeds that of whole galaxy full (100 billion) of stars.

What is a supernova? Why sun becomes a white dwarf, not a supernova

• In future double-shell burning sun, hot enough to burn $^3\text{He} \rightarrow ^{\text{3}}\text{C}$
• When He exhausted, gravity wins, and core contracts.
• Temperature rises.
• Electrons are so tight that they become degenerate.
• New source of pressure to resist gravity.
• Temperature not hot enough to burn carbon.

What is a supernova? Why massive star becomes a supernova

• In future double-shell burning massive star, hot enough to burn $^3\text{He} \rightarrow ^{\text{3}}\text{C}$
• When He exhausted, gravity wins, and core contracts.
• Temperature rises by larger amount b/c gravity is stronger.
• Temperature hot enough to burn carbon.

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Min. Temp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$^4\text{He} \rightarrow ^{\text{4}}\text{He}$</td>
<td>10^9 K</td>
</tr>
<tr>
<td>$^3\text{He} \rightarrow ^{\text{3}}\text{C}$</td>
<td>2×10^9</td>
</tr>
<tr>
<td>$^{13}\text{C} + ^{\text{4}}\text{He} \rightarrow ^{\text{16}}\text{O}, ^{\text{10}}\text{Ne}, ^{\text{11}}\text{Na}, ^{\text{12}}\text{Mg}$</td>
<td>8×10^9</td>
</tr>
<tr>
<td>$^{16}\text{O} \rightarrow ^{\text{16}}\text{O}, ^{\text{12}}\text{C}$</td>
<td>1.5×10^9</td>
</tr>
<tr>
<td>$^{20}\text{Ne} + ^{\text{4}}\text{He} \rightarrow ^{24}\text{Mg}$</td>
<td>2×10^9</td>
</tr>
<tr>
<td>^{24}Mg</td>
<td>3×10^9</td>
</tr>
</tbody>
</table>

What is a supernova? Why massive star becomes a supernova

• Hot enough to burn $^4\text{He} + ^{12}\text{C} \rightarrow ^{16}\text{O}$, etc
• When C exhausted, gravity wins, and core contracts.
• Temperature rises.
• Temperature hot enough to burn neon.
• $^{20}\text{Ne} + ^{4}\text{He} \rightarrow ^{24}\text{Mg}$
• Disaster with iron
 • Burning releases energy
 • Fusing iron takes up energy
• Gravity finally wins.
What is a supernova? Why massive star becomes a supernova

- Disaster with iron
 - Burning releases energy
 - Fusing iron takes up energy
- Gravity finally wins.
- Star collapses in few seconds
- Rebounds as supernova
 - Reason for rebounding is topic of current research
- Expel outer layers

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Min. Temp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$4 , \text{H} \rightarrow , \text{He}$</td>
<td>$10^9 , \text{K}$</td>
</tr>
<tr>
<td>$3 , \text{He} \rightarrow , \text{C}$</td>
<td>2×10^9</td>
</tr>
<tr>
<td>$\text{C} + , \text{He} \rightarrow , \text{O, Ne, Na, Mg}$</td>
<td>8×10^9</td>
</tr>
<tr>
<td>$\text{Ne} \rightarrow , \text{O, Mg}$</td>
<td>1.5×10^9</td>
</tr>
<tr>
<td>$\text{O} \rightarrow , \text{Mg, S}$</td>
<td>2×10^9</td>
</tr>
<tr>
<td>$\text{Si} \rightarrow , \text{Fe peak}$</td>
<td>3×10^9</td>
</tr>
</tbody>
</table>

1. What prevents the sun from becoming a supernova?
 a. Iron core is stable.
 b. Degeneracy pressure prevents temperature from rising.
 c. Carbon burning.
 d. That is wrong; the sun will become a supernova.
2. If neon was the most stable element, massive stars live
 a. longer
 b. shorter

What is left?

- Outer layers expelled into space. New stars may form.
- Core becomes
 - Neutron star. One in Crab. Pulses every $1/30 \, \text{s}$.
 - Black hole
- Neutron star
 - Normally
 - neutron\rightarrowproton+electron+neutrino+energy
 - Pressure is so high that
 - proton+electron+energy\rightarrowneutron+neutrino
 - Whole star is like a big nucleus of neutrons.
 - Neutrons are degenerate
 - Star is size of Lansing

1. Missouri Club
 - Friday, 9:00am
 - Room 1410?
2. Study guide
 - Will put on web by end of day.
 - Big ideas
 - Medium-sized ideas
 - Questions