History—27 Apr

• Rate your course
 • And then get 3 clicker pts on angel
• Final Exam
 • Thurs, May 5th, 8:00-10:00pm, VMC E100 (SE corner of Wilson & Bogue)
 • About 70 questions
 • Half on topics covered on previous tests; half on new topics.
 • On Mon., May 9th, you will be able to look at the final on www.loncapa.msu.edu.
• Course grade
 • Final counts 35% of course grade
 • Curved so that class average is about 2.9
 • Study guide is ready (sample questions not ready)
 • See announcement on angel
 • Or go to syllabus and click on “Study Guide” next to Final Exam.
 • Missouri Club (Show me) on Friday during class.
 • No clicker questions.

History—27 Apr

• How and when did galaxies and stars form?
 • 3 min: Helium formed from loose neutrons
 • 300,000 yr: Universe became transparent
 • First stars and galaxies formed at R=1/30-1/11 (80-300Myr)
 • Evidence from computer simulations
 • Evidence from quasars
 • Evidence from WMAP
 • 13.7 Byr: present. Stars and galaxies abound
 • Milky Way
 • Large & Small Magellanic Clouds
 • Many smaller galaxies
 • Andromeda
 • Its satellites

Structure in the Present Universe: Local Group

• Milky Way
 • Large & Small Magellanic Clouds
 • Many smaller galaxies
• Andromeda
 • Its satellites

Structure in the Present Universe: Galaxy Clusters

• Hercules
• Abell 2218
Structure in the Present Universe: Galaxy Clusters

- Virgo Cluster ($10^{14} \, M_\odot$) is nearest big cluster
- Local Super Cluster ($10^{15} \, M_\odot$)

Structure on Larger Scales

- Clusters
- Voids

Before Decoupling

- Forming a star or galaxy
 - By chance there is a denser than average clump of matter.
 - Gravity pulls clump together
 - Gravity of even denser clump grows
 - Clump collapses
- Stars and galaxies cannot form before decoupling
 - Gravity tries to pull a dense clump
 - Radiation & matter are coupled
 - Pressure of radiation resists gravity. Formation fails.

Computer Simulations

- Ingredients of computer simulation
 - Dark matter point masses
 - Does not interact with light
 - Does not hit other dark matter
 - Only interaction is gravity
 - Universe expands
 - Start with random nonuniformity
 - Clustering does reproduce reality
 - Simulation cannot “compute” galaxy formation
 - Requires more complicated physics
 - Gas radiates
 - Interaction between gas & stars: supernovae
Clues from Quasars

- Quasars are black holes fed by gas.
- Quasars formed in dense regions; they must have been first objects to collapse.
- Most distant quasar discovered is at $R=1/5$.

Number of Quasars vs Time

- Number of quasars per unit volume.
- Rate at which stars are formed in galaxies.

Clues from WMAP

- WMAP detected small polarization in cosmic background radiation.
- Scattered light is polarized:
 - Look at reflection off road with your polaroid sunglasses. Then turn sunglasses 90°.
 - Look at sky 90° from sun on clear day with your polaroid sunglasses. Then turn sunglasses 90°.

Clues from WMAP

- WMAP detected small polarization in cosmic background radiation.
- Scattered light is polarized:
 - Look at reflection off road with your polaroid sunglasses. Then turn sunglasses 90°.
 - Look at sky 90° from sun on clear day with your polaroid sunglasses. Then turn sunglasses 90°.

Scattering reduces electric field in paper.

Scattering does not reduce electric field perpendicular to paper.
Clues from WMAP

- WMAP detected small polarization in cosmic background radiation. Polarization is caused by scattering the radiation.
- Un-ionized matter does not scatter light.
- After decoupling, first stars and quasars must have re-ionized the matter.
- First stars & quasars formed at R=1/11+30

- Scattered light can only come from distance
 \[D = c \times \text{age of universe} \]
- At small angles (large \(l\)), polarization is same b/c light comes from same region of space.

1. If scattering occurs immediately after decoupling (R=1000),
 \[D= 300,000 \text{lyr} \] & \(l=180 \)

- If scattering occurs at R=100, then peak in polarization occurs at a) \(l=180 \), b) \(l=18 \), c) \(l=4 \), d) very large \(l \).