Adiabatic Expansion \((\Delta Q = 0)\)

Occurs if:
- change is made sufficiently quickly
- and/or with good thermal isolation.

Governing formula:

\[
P V^{\gamma} = \text{constant}
\]

where \(\gamma = \frac{C_p}{C_v}\)

Because \(PV/T\) is constant (ideal gas):

\[
V^{\gamma-1} T = \text{constant} \quad \text{(for adiabatic)}
\]
Proof of $PV = \text{constant}$
(for adiabatic process)

1) Adiabatic: $dQ = 0 \Rightarrow dU + dW = dU + PdV$

2) U only depends on T:

$$dU = n C_V \, dT$$ (derived for constant volume, but true in general)

3) Ideal gas: $T = \frac{PV}{nR}$

$$dT = \frac{[(dP)V + P(dV)]}{nR}$$

Plug into 2): $dU = \left(\frac{C_V}{R}\right)[VdP + PdV]$

Plug into 1): $0 = \left(\frac{C_V}{R}\right)[VdP + PdV] + PdV$
Rearrange:

\[
\frac{dP}{P} = - \frac{(C_V + R)}{C_V} \frac{dV}{V}
\]

where \(\boxed{g} = \frac{(C_V + R)}{C_V} = \frac{C_p}{C_V} \)

Integrate both sides:

\[
\ln(P) = - \boxed{g} \ln(V) + \text{constant}
\]

or

\[
\ln(PV^{\boxed{g}}) = \text{constant}
\]

or

\[
P^{\boxed{g}}V = \text{constant}
\]

QED
Irreversible Processes

Examples:

• Block sliding on table comes to rest due to friction: KE converted to heat.

• Heat flows from hot object to cold object.

• Air flows into an evacuated chamber.

Reverse process allowed by energy conservation, yet it does not occur.

→ arrow of time

Why?

2nd Law of Thermodynamics (entropy)
Heat Engines

Heat engine: a cyclic device designed to convert heat into work.

Hot Reservoir, T_H

Q_H

Work, W

Q_C

Cold Reservoir, T_C

2^{nd} Law of TD (Kelvin form):

It is impossible for a cyclic process to remove thermal energy from a system at a single temperature and convert it to mechanical work without changing the system or surroundings in some other way.
For a cyclic engine $\sum U = 0$,

So work done is equal to
heat in minus heat out:

$$ W = Q_H - Q_C $$

Define the Efficiency of the engine:

$$ e = \frac{W}{Q_H} = \frac{(Q_H - Q_C)}{Q_H} = 1 - \frac{Q_C}{Q_H} $$

Corollary of the 2nd Law of TD:

It is impossible to make a heat engine whose efficiency is 100%.
Refrigerators

Refrigerator: a cyclic device which uses work to transfer heat from a cold reservoir to hot reservoir.

2nd Law of TD (Clausius form):

It is impossible for a cyclic process to have no other effect than to transfer thermal energy from a cold object to a hot object.
A measure of refrigerator performance is the ratio:

\[K = \frac{Q_c}{W} \]

"Coefficient of performance"
(The larger the better.)

Corollary of the 2\(^{nd}\) Law of TD:

It is impossible for the coefficient of performance to be infinite.
Equivalence of Kelvin and Clausius Statements

For example:

You could combine an ordinary refrigerator with a perfect engine (impossible)...

to obtain a perfect refrigerator (also impossible).
The Carnot Engine

2nd Law of TD says:
100\% efficient Heat Engine is impossible.

What is the maximum possible efficiency?

No engine working between 2 heat reservoirs can be more efficient than an ideal engine acting in a Carnot cycle.
(Sadi Carnot, 1824)

Properties of the Carnot cycle:

1. It is reversible: no friction or other dissipative forces.
2. Heat conduction only occurs isothermally at the temperatures of the two reservoirs.
Derivation of Carnot Efficiency

1-2: Isothermal (Q_{in} at T_H)
2-3: Adiabatic expansion
3-4: Isothermal (Q_{out} at T_C)
4-1: Adiabatic compression

$$e = 1 - \frac{T_C}{T_H}$$
The Stirling Engine

Invented by Robert Stirling in 1816. Its operating cycle is:

The two temperature-changing steps are performed at constant volume; A heat transfer occurs at these steps also.

$\text{Stirling} < \text{Carnot}$
Entropy

Consider a reversible process for an ideal gas:

\[dQ = dU + dW = n \, C_v \, dT + P \, dV \]

\[= n \, C_v \, dT + n \, R \, T \left(\frac{dV}{V} \right) \]

We cannot write a general integral of this, because \(dW \) (and therefore \(dQ \)) depends on the functional form of \(T(V) \) (i.e. the path). However, if we divide by \(T \):

\[\frac{dQ}{T} = n \, C_v \left(\frac{dT}{T} \right) + n \, R \left(\frac{dV}{V} \right) \]

is integrable independent of path.

This suggests a new state function, **Entropy**, defined by:

\[\Delta S = S_f - S_i = \int_i^f \frac{dQ}{T} \]

(Valid for any system)
In general, the process may be too complicated to do the integral (particularly if irreversible process):

However, because entropy is a state function, we can choose any convenient path between i and f to integrate.

For an ideal gas:

\[\Delta S = n \, C_v \, \ln \left(\frac{T_f}{T_i} \right) + n \, R \, \ln \left(\frac{V_f}{V_i} \right) \]

This only depends on the initial state \((V_i, T_i)\) and final state \((V_f, T_f)\), but not the path.
Isothermal Expansion: $T_f = T_i$, $V_f > V_i$

The amount of heat which leaves the reservoir and enters the gas is

$$Q = n \, R \, T \ln(V_f/V_i).$$

The entropy change of the gas is

$$\Delta S_{\text{gas}} = + \frac{Q}{T} = n \, R \, \ln(V_f/V_i).$$

The entropy change of the reservoir is

$$\Delta S_{\text{reservoir}} = - \frac{Q}{T}.$$

The net entropy change is

$$\Delta S_{\text{universe}} = \Delta S_{\text{gas}} + \Delta S_{\text{reservoir}} = 0.$$

This illustrates a general result:

In a reversible process, the entropy change of the universe (system + surroundings) is zero.
Adiabatic Free Expansion of an Ideal Gas

Two containers connected by stopcock. They are thermally insulated so no heat can flow in or out.

Initial: One container is evacuated. Gas is in volume V_i at temperature T_i.

Final: Stopcock opened, gas rushes into second chamber. Gas does no work (nothing to push against) and there is no heat transfer. So internal energy does not change. Final volume $V_f > V_i$ at temperature $T_f = T_i$.
Because there is no heat transfer, you might think $\int S = 0$. WRONG! This is an irreversible process. We can’t integrate $\int \frac{dQ}{T}$.

But entropy is a state function, and we do know the initial and final conditions for the **Free Expansion**. They are exactly the same as for an **Isothermal Expansion**. So

$$\Delta S_{\text{gas}} = nR \ln(V_f/V_i).$$

Just as for an isothermal expansion. However, since it is thermally isolated from its surroundings,

$$\Delta S_{\text{surround}} = 0$$

and

$$\Delta S_{\text{universe}} = \Delta S_{\text{gas}} + \Delta S_{\text{surround}} = nR \ln(V_f/V_i) > 0.$$

In an irreversible process, the entropy of the universe increases.
Entropy and Heat Engines

For a reversible cycle:

\[\Delta S = \oint \frac{dQ}{T} \]

This implies that \(dQ\) cannot be strictly positive. There must also be heat released in the cycle.

Carnot cycle: \((Q_{in}/T_H) + (-Q_{out}/T_C) = 0\).

2nd Law of TD (Entropy form):

\[\Delta S_{universe} \geq 0. \]

(greater-than sign for irreversible processes, and equals sign for reversible processes)