Critical exponents in metastable decay via quantum activation

M. I. Dykman
Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
(Received 5 June 2006; published 3 January 2007)

We consider decay of metastable states of forced vibrations of a quantum oscillator close to the bifurcation points where the states disappear. Decay occurs via quantum activation over a quasienergy barrier, a mechanism that differs from both tunneling and thermal activation. The decay probability W scales with the distance η to the bifurcation point as $|\ln W| \propto \eta^f$. The exponent f is found for a resonantly driven oscillator and an oscillator modulated at nearly twice its eigenfrequency.

Decay of a metastable state is usually considered as resulting from tunneling or thermal activation. In this paper we study a different decay mechanism, quantum activation. It relates to periodically modulated systems. As tunneling, quantum activation is due to quantum fluctuations, but as thermal activation, it involves diffusion over an effective barrier separating the metastable state. It is often more probable than tunneling even for $T \rightarrow 0$.

Metastable decay of vibrational states in modulated systems has attracted much attention recently. Such diverse systems as trapped electrons and atoms [1,2], Josephson junctions [3], and nanomechanical oscillators [4,5] have been studied. The experiments largely focused on the parameter range where the system was close to a bifurcation point in which the metastable state disappears. In this range the decay probability is comparatively large and displays characteristic scaling with the distance to the bifurcation point. So far classical activation was studied, but recently quantum regime has been also reached [6].

For classical systems, scaling of the rate of activated decay near a bifurcation point was found theoretically both in the cases of equilibrium [7–9] and nonequilibrium systems [10–12]. In the latter case a scaling crossover may occur as the system goes from the underdamped to overdamped regime while approaching the bifurcation point [13]. Such crossover is well known also for quantum tunneling in equilibrium dissipative systems [14].

In this paper we study decay of metastable vibrational states in dissipative systems close to bifurcation points, where the motion becomes overdamped. The analysis refers to the systems of current interest, Josephson junctions in particular, which can be modeled by quantum oscillators driven by a resonant force or parametrically modulated at nearly twice the eigenfrequency. We will start with a resonantly driven nonlinear oscillator. Its Hamiltonian is

$$H_0(t) = \frac{1}{2} p^2 + \frac{1}{2} \omega_0 q^2 + \frac{1}{4} \gamma q^4 - q A \cos \omega_t t. \tag{1}$$

In the presence of weak damping the oscillator may have two coexisting stable states of classical forced vibrations [18]. They emerge already for a small modulation amplitude A provided the detuning $\delta \omega = \omega_f - \omega_0$ of the modulation frequency ω_f from the oscillator eigenfrequency ω_0 is small, $|\delta \omega| < \omega_f$. We assume that the nonlinearity is small, $|\gamma|/\omega_f < \omega_0$, and that $\gamma \delta \omega > 0$, which is necessary for the bistability; for concreteness we set $\gamma > 0$.

It is convenient to switch from q, p to slowly varying operators Q, P using a transformation $q = C_{\text{res}}(Q \cos \omega_f t + P \sin \omega_f t), p = -C_{\text{res}} \omega_f (Q \sin \omega_f t - P \cos \omega_f t)$ with $C_{\text{res}} = (8 \omegaf \delta \omega / 3 \gamma)^{1/2}$. The variables Q, P are the scaled coordinate and momentum in the rotating frame,

$$[P, Q] = -i \lambda, \quad \lambda = 3 \hbar \gamma / 8 \omegaf^2 \delta \omega. \tag{2}$$

The parameter λ plays the role of the effective Planck constant. We are interested in the semiclassical case; λ is the small parameter of the theory, $\lambda \ll 1$.

In the rotating wave approximation the Hamiltonian (1) becomes $H_0 = (\hbar / \lambda) \delta \omega \tilde{g}$, with

$$\tilde{g} = g(Q, P) = \frac{1}{4} (Q^2 + P^2 - 1)^2 - \beta^{1/2} Q.$$

The exponent f is found for a resonantly driven oscillator and an oscillator modulated at nearly twice its eigenfrequency.
\[\beta = 3 \gamma A^2 / 32 \omega_0^3 (\delta \omega)^3 \]

[in the case \(\gamma, \delta \omega < 0 \) one should replace \(\dot{g} \rightarrow -\dot{g} \). \(H_0 \) becomes \(\frac{\hbar}{\lambda} \delta \omega \delta \dot{\omega} \). Operator \(\delta \) plays the role of the oscillator Hamiltonian in dimensionless time \(\tau = 1/\delta \omega \). The eigenvalues of \(\delta \) give oscillator quasienegyres.]

The parameter \(\beta \) in Eq. (3) is the scaled intensity of the driving field. For weak damping the oscillator is bistable provided \(0 < \beta < 4/27 \). In this range the function \(g(Q, P) \) has a shape of a tilted Mexican hat. The maximum at the top of the central dome and the minimum at the lowest point of the rim correspond, respectively, to the small- and large-amplitude states of forced vibrations. The saddle point of \(g \) corresponds to the unstable periodic state of the oscillator.

We will consider two major relaxation mechanisms of the oscillator: damping due to coupling to a thermal bath and dephasing due to oscillator frequency modulation by an external noise. Usually the most important damping mechanism is transitions between neighboring oscillator energy levels. They result from the coupling in the rotating frame. Since the energy transfer is \(\approx \hbar \omega_0 \), in the rotating frame the transitions look instantaneous. We will assume that the correlation time of the noise that modulates the oscillator frequency is also short compared to \(1/\delta \omega \), so that the noise is effectively \(\delta \) correlated in slow time \(\tau \). Then the quantum kinetic equation is Markovian in rotating frame,

\[\dot{\rho} = [\gamma \rho, \hat{\rho}] = -i [\gamma \rho, \hat{\rho}] = \hat{I} \rho + \hat{I}^{\rho \rho}, \]

where \(\hat{I} \rho \) describes damping,

\[\hat{I} \rho = \Gamma \delta \omega^{-1} \{ (\tilde{n} + 1) (\hat{a} \hat{a} \rho - 2 \hat{a} \rho \hat{a} + \rho \hat{a} \hat{a}) + \tilde{n} (\hat{a} \hat{a} \rho - 2 \hat{a} \rho \hat{a} + \rho \hat{a} \hat{a}) \}, \]

and \(\hat{I}^{\rho \rho} \rho \) describes dephasing,

\[\hat{I}^{\rho \rho} \rho = \Gamma \delta \omega^{-1} \{ [\hat{a} \hat{a} \rho, [\hat{a} \hat{a}, \rho]] \}. \]

Here, \(\Gamma \) and \(\Gamma^{\rho \rho} \) are the damping and dephasing rates, \(\tilde{n} = (2\lambda)^{-1/2} (Q + P) \) is the lowering operator, and \(\tilde{n} = [\exp(h \omega_0 / kT) - 1]^{-1} \) is the oscillator Planck number. In what follows we use dimensionless parameters

\[\Omega = |\delta \omega| / \Gamma, \quad \chi^{\rho \rho} = \Gamma^{\rho \rho} / \Lambda \Gamma. \]

We assume that \(\chi^{\rho \rho} \ll 1 \). This means that the dephasing fluctuations intensity may be comparable to the intensity of quantum fluctuations associated with damping, which is \(\approx \lambda \Gamma \), see below, but that \(\Gamma^{\rho \rho} \ll \Gamma \).

The distribution \(\rho \) was studied earlier for additively and parametrically driven oscillators at \(T = \chi^{\rho \rho} = 0 \) where there is detailed balance \([19–21]\), and the lowest eigenvalue of \(\hat{I} \) was studied numerically \([22]\). However, the \(T = \chi^{\rho \rho} = 0 \) solution is fragile. It can change exponentially strongly already for extremely small \(T \), \(\chi^{\rho \rho} \) \([15,16]\). The analysis \([15,16]\) revealed the mechanism of quantum activation over a quasienergy barrier, but the results referred to the case where the damping-induced broadening of quasienergy levels is small compared to the typical interval level distance. This condition necessarily breaks sufficiently close to a bifurcation point where the level spacing becomes small as a consequence of the motion slowing down. Therefore the analysis should be done differently. It is simplified in the Wigner representation,

\[\rho_w(Q, P) = \int d\xi e^{-iQ\xi} \rho \left(Q + \frac{1}{2} \xi, Q - \frac{1}{2} \xi \right), \]

where \(\rho(Q, P) = \langle Q | \rho | P \rangle \) is the density matrix in the coordinate representation. Using Eqs. (2)–(8) one can write the equation for \(\rho_w \) as a sum of terms proportional to different powers of \(\lambda \),

\[\rho_w = - \nabla (K \rho_w) + \lambda \hat{L}^{(1)} \rho_w + \lambda^2 \hat{L}^{(2)} \rho_w, \]

where \(K = (K_Q, K_P) \) and \(\nabla = (\partial Q, \partial P) \). Vector \(K \) determines the evolution of the density matrix in the absence of quantum and classical fluctuations,

\[K_Q = \partial Q g - \Omega^{-1} Q, \quad K_P = \partial P g - \Omega^{-1} P. \]

This evolution corresponds to classical motion

\[\dot{Q} = K_Q, \quad \dot{P} = K_P. \]

The condition \(K = 0 \) gives the values of \(Q, P \) at the stationary states of the oscillator in the rotating frame.

The term \(\hat{L}^{(1)} \) in Eq. (9) describes classical and quantum fluctuations due to damping and dephasing,

\[\hat{L}^{(1)} = \Omega^{-1} \left[\tilde{n} + \frac{1}{2} \right] \nabla^2 + \chi^{\rho \rho} (Q \partial_P - P \partial_Q)^2. \]

These fluctuations lead to diffusion in \((Q, P) \) space, as seen from the structure of \(\hat{L}^{(1)} \).

The term \(\hat{L}^{(2)} \) in Eq. (9) describes quantum effects for an isolated oscillator, including tunneling,

\[\hat{L}^{(2)} = - \frac{1}{4} (Q \partial_P - P \partial_Q) \nabla^2. \]

In contrast to \(\hat{L}^{(1)} \), it contains third derivatives. Generally the term \(\chi^{\rho \rho} \hat{L}^{(2)} \rho_w \) is not small, because \(\rho_w \) varies on distances \(\sim \lambda \). This complicates using the Wigner representation to describe oscillator dynamics \([22]\). However, near a bifurcation point the term \(\chi^{\rho \rho} \hat{L}^{(2)} \) is small, see below. This major simplification allows solving Eq. (9), thus making the Wigner representation advantageous.

From Eqs. (10) and (11), for given reduced damping \(\Omega^{-1} \) the oscillator has two stable and one unstable stationary state in the rotating frame (periodic states of forced vibrations) in the range \(\beta^{(1)}(\Omega) < \beta < \beta^{(2)}(\Omega) \) and one stable state outside this range \([18]\), with

\[\beta^{(1,2)}(\Omega) = \frac{2}{27} [1 + 9 \Omega^{-2} \mp (1 - 3 \Omega^{-2})^{3/2}] \]

At \(\beta^{(1)} \) and \(\beta^{(2)} \) the stable states with large and small vibration amplitudes, respectively, merge with the saddle state (saddle-node bifurcation). The corresponding values of \(Q, P \) are \(Q_B = \beta^{(1)} / (\Omega^2 Y_B - 1), \quad P_B = \beta^{(2)} / (\Omega^2 - Y_B) \), where \(Y_B = Q_B^2 + P_B^2 \).
\[Y^{(1,2)}_B = \frac{1}{3} [2 \pm (1 - 3\Omega^{-2})^{1/2}] \]

In the absence of fluctuations the dynamics of a classical system near a saddle-node bifurcation point is controlled by one slow variable [23]. In our case it can be found by expanding \(K_{Q,P} = Q-Q_B, \delta P = P-P_B \), and the distance to the bifurcation point \(\eta = \beta - \beta_B \). The function \(K_P \) does not contain linear terms in \(Q, \delta P \). Then, from Eq. (11), \(P \) slowly varies in time for small \(\delta Q, \delta P, \eta \). On the other hand

\[K_Q = -2\Omega^{-1}(\delta Q - a_B\delta P), \quad a_B = \Omega (2Y_B - 1). \]

Therefore the relaxation time of \(Q = \Omega/2 \), it does not depend on the distance to the bifurcation point. As a consequence, \(Q \) follows \(P \) adiabatically, i.e., over time \(\sim \Omega \) it adjusts to the instantaneous value of \(P \).

The adiabatic approximation can be applied also to fluctuating systems. The approach is well known for classical systems described by the Fokker-Planck equation (FPE) [24]. Equation (9) describes quantum fluctuations and has higher-order derivatives compared to an FPE. It turns out, however, that \(\rho_B \) can still be sought as a product of a Gaussian distribution over \(\delta Q = \delta Q_B - a_B\delta P \) and a function \(\tilde{\rho}_w(\delta P) \) that describes the distribution over \(\delta P \). An equation for \(\tilde{\rho}_w \) is obtained by substituting \(\rho_B \) into Eq. (9) and integrating over \(\delta Q \). This gives

\[\dot{\tilde{\rho}}_w = \delta P \tilde{\rho}_w \delta P U + \lambda D_B \delta P \tilde{\rho}_w, \]

where \(U \) and \(D \) have the form

\[U = \frac{1}{3} b(\delta P)^3 - \frac{1}{2} \beta_B^{1/2}/\eta \delta P, \quad \eta = \beta - \beta_B, \]

\[D_B = \Omega^{-1} \left[\left(\frac{b}{2} + \frac{1}{2} \right) + \frac{x}{2} \right] (1 - Y_B) \]

with \(b = -\beta_B^{1/2}(2Y_B - 1)^2 \left(1 - 2\Omega^{-2}Y_B^2 + \Omega^2 \right) \). In Eqs. (17) and (18) we kept only the lowest order terms in \(\delta P, \beta - \beta_B, \lambda \). In particular we dropped the term \(-\lambda^2 \Omega_B^2 \tilde{\rho}_w / 4 \) which comes from the operator \(\hat{L}^{(2)} \) in Eq. (9). One can show that, for typical \(|\delta P| \sim |\eta|^{1/2} \), this term leads to corrections \(\sim \eta, \lambda \) to \(\tilde{\rho}_w \).

Equation (17) has a standard form of the equation for classical diffusion in a potential \(U(\delta P) \), with diffusion coefficient \(\lambda D_B \). For \(\eta b > 0 \) the potential \(U \) has a minimum and a maximum. They correspond to the stable and saddle states of the oscillator. The distribution \(\rho_B \) has a diffusion-broadened peak at the stable state. Diffusion also leads to escape from the stable state, i.e., to metastable decay. The decay rate \(W \) is given by the Kramers theory [25],

\[W = Ce^{-R_A/\lambda}, \quad R_A = \frac{2^{1/2}}{3D_B b^{1/2} \beta_B^{3/4}}, \]

with prefactor \(C = \pi^{-1} (b^2/2)^{1/2} \beta_B^{1/4} |\delta B| \) (in unscaled time \(t \)). Tunneling through the barrier \(U(\delta P) \), which would be affected by the term \(\sim \hat{L}^{(2)} \), can be disregarded.

The rate (19) displays activation dependence on the effective Planck constant \(\lambda \). The characteristic quantum activation energy \(R_A \) scales with the distance to the bifurcation point \(\eta = \beta - \beta_B \) as \(\eta^{3/2} \). This scaling is independent of temperature. However, the factor \(D_B \) in \(K_A \) displays a characteristic \(T \) dependence. In the absence of dephasing we have \(D_B = 1/2 \Omega \) for \(\eta \ll 1 \), whereas \(D_B = kT/h\omega_0\Omega \) for \(\eta \gg 1 \). In the latter case the expression for \(W \) coincides with the result [10].

In the limit \(\Omega \gg 1 \) the activation energy (19) for the small-amplitude state has the same form as in the range of \(\beta \) still close but further away from the bifurcation point, where the distance between quasienergy levels largely exceeds their width [15]. We note that the exponent for tunneling between the states with equal quasienergy scales as \(\eta^{3/4} \) [11], which is parametrically larger than \(\eta^{3/2} \) for small \(\eta \) (for comparison, for a particle in a cubic potential (18) the tunneling exponent in the strong-damping limit scales as \(\eta^{1/2} \)).

For the large-amplitude state the quantum activation energy, Eq. (19), displays different scaling from that further away from the bifurcation point, where \(R_A \propto \beta^{3/2} \Omega^{1} \) for \(\Omega \gg 1 \) [15]. For this state we therefore expect a scaling crossover to occur with varying \(\beta \).

The approach to decay of vibrational states can be extended to a parametrically modulated oscillator. The Hamiltonian of such an oscillator is

\[H_0(t) = \frac{1}{2} p^2 + \frac{1}{2} q^2 [\omega_0^2 + F \cos(\omega_0 t)] + \frac{1}{4} \eta q^4. \]

When the modulation frequency \(\omega_F \) is close to \(2\omega_0 \), as a result of parametric resonance the oscillator may have two stable states of vibrations at frequency \(\omega_F \) (period-two states) shifted in phase by \(\pi \) [18]. For \(F \ll \omega_0^2 \) the oscillator dynamics is characterized by the dimensionless frequency detuning \(\mu \), effective Planck constant \(\lambda \), and relaxation time \(\zeta \),

\[\mu = \frac{\omega_F(\omega_F - 2\omega_0)}{F}, \quad \lambda = \frac{3|\eta| b}{F \omega_F}, \quad \zeta = \frac{F}{2\omega_0 \Gamma}. \]

As before, \(\lambda \) will be the small parameter of the theory.

Parametric excitation requires that the modulation be sufficiently strong, \(\zeta > 1 \). For such \(\zeta \) the bifurcation values of \(\mu \) are

\[\mu_{\beta}^{(1,2)} = \frac{1}{2} (1 - \zeta^2)^{1/2}, \quad \zeta > 1. \]

If \(\gamma > 0 \), as we assume, for \(\mu < \mu_{\beta}^{(1)} \) the oscillator has one stable state; the vibration amplitude is zero. As \(\mu \) increases and reaches \(\mu_{\beta}^{(1)} \) this state becomes unstable and there emerge two stable period-two states (a supercritical pitchfork bifurcation). They remain stable for larger \(\mu \). In addition, when \(\mu \) reaches \(\mu_{\beta}^{(2)} \) the zero-amplitude state also becomes stable (a subcritical pitchfork bifurcation). The case \(\gamma < 0 \) is described by replacing \(\mu \rightarrow -\mu \).

The classical fluctuation-free dynamics for \(\mu \) close to \(\mu_{\beta} \) is controlled by one slow variable [23]. The analysis analogous to that for the resonant case shows that, in the Wigner representation, fluctuations are described by one-dimensional diffusion in a potential, which in the present case is quartic in the slow variable. The probability \(W \) of switching between
the period-two states for small $\mu - \mu_B^{(1)}$ and the decay probability of the zero-amplitude state for small $\mu - \mu_B^{(2)}$ have the form $W = C \exp(-R_A/\kappa)$ with

$$ R_A = |\mu_B| \eta^2 / 2(2n + 1), \quad \eta = \mu - \mu_B $$

$(\mu_B^{(1,2)})$. The corresponding prefactors are $C_B^{(2)} = 2C_B^{(1)} = 2^{1/2} \pi^{1/2} |\mu_B||\mu - \mu_B|$. We note that dephasing does not affect the decay rate, to zeroth order in $\mu - \mu_B$.

From Eq. (23), at parametric resonance the quantum activation energy R_A scales with the distance to the bifurcation point as η^2. In the limit $\xi \gg 1$ the same expression as Eq. (23) describes switching between period-two states still close but further away from the bifurcation point, where the distance between quasienergy levels largely exceeds their width. In contrast, the exponent for tunneling decay in this case scales as $\eta^{3/2}$ [16].

It follows from the above results that, both for resonant and parametric modulation, close to bifurcation points decay of metastable vibrational states occurs via quantum activation. The quantum activation energy is smaller than the tunneling action. Near bifurcation points these quantities become parametrically different and scale as different powers of the distance to the bifurcation point.

The exponent of the decay rate displays a characteristic dependence on temperature. In the absence of dephasing, for $kT \gg \hbar \omega$, we have standard thermal activation, $R_A \approx 1/T$. The low-temperature limit is described by the same expression with kT replaced by $\hbar \omega/2$. Quantum activation imposes a limit on the sensitivity of bifurcation amplifiers based on modulated Josephson oscillators used for quantum measurements [3].

In conclusion, we have studied decay of metastable states of forced vibrations of a quantum oscillator. Both energy dissipation from coupling to a bath and noise-induced dephasing were taken into account. We have found the exponent and the prefactor in the decay rate near bifurcation points. The quantum activation energy for resonantly excited period-one states scales with the distance η to the bifurcation point as $\eta^{3/2}$, whereas for parametrically excited period-two states it scales as η^2.

I am grateful to M. Devoret for the discussion and for pointing out the analogy between quantum activation and the Unruh effect. This research was supported in part by the NSF through Grant No. PHY-0555346.