1. [20 pts] In order to derive the properties of the spherical harmonics, we need to determine the action of the angular momentum operator in spherical coordinates. Just as we have \(\langle x | P_x | \psi \rangle = -i \hbar \frac{d}{dx} \langle x | \psi \rangle \), we should find a similar expression for \(\langle r \theta \phi | \vec{L} | \psi \rangle \). From \(\vec{L} = \vec{R} \times \vec{P} \) and our knowledge of momentum operators, it follows that
\[
\langle r \theta \phi | \vec{L} | \psi \rangle = -i \hbar \left(\vec{e}_x \left(y \frac{d}{dz} - z \frac{d}{dy} \right) + \vec{e}_y \left(z \frac{d}{dx} - x \frac{d}{dz} \right) + \vec{e}_z \left(x \frac{d}{dy} - y \frac{d}{dx} \right) \right) \langle r \theta \phi | \psi \rangle.
\]
Cartesian coordinates are related to spherical coordinates via the transformations
\[
x = r \sin \theta \cos \phi \\
y = r \sin \theta \sin \phi \\
z = r \cos \theta
\]
and the inverse transformations
\[
r = \sqrt{x^2 + y^2 + z^2} \\
\theta = \arctan \left(\frac{\sqrt{x^2 + y^2}}{z} \right) \\
\phi = \arctan \left(\frac{y}{x} \right).
\]
Their derivatives can be related via expansions such as
\[
\partial_x = \frac{\partial r}{\partial x} \partial_r + \frac{\partial \theta}{\partial x} \partial_\theta + \frac{\partial \phi}{\partial x} \partial_\phi.
\]
Using these relations, and similar expressions for \(\partial_y \) and \(\partial_z \), find expressions for \(\langle r \theta \phi | L_x | \psi \rangle \), \(\langle r \theta \phi | L_y | \psi \rangle \), and \(\langle r \theta \phi | L_z | \psi \rangle \), involving only spherical coordinates and their derivatives.
\[
\begin{align*}
\partial_x r &= \frac{\partial x}{r} = \sin \theta \cos \phi \\
\partial_x \theta &= \frac{\partial x}{\sqrt{x^2 + y^2}} = \frac{\cos \theta \cos \phi}{r} \\
\partial_x \phi &= \frac{\partial x}{x^2 + y^2} = -\frac{\csc \theta \sin \phi}{r} \\
\text{So } \frac{d}{dx} &= \sin \theta \cos \phi \partial_r + \frac{\cos \theta \cos \phi}{r} \partial_\theta - \frac{\csc \theta \sin \phi}{r} \partial_\phi \\
\partial_y r &= \frac{\partial y}{r} = \sin \theta \sin \phi \\
\partial_y \theta &= \frac{\partial y}{\sqrt{x^2 + y^2}} = \frac{\cos \theta \sin \phi}{r} \\
\partial_y \phi &= \frac{\partial y}{x^2 + y^2} = \frac{\csc \theta \cos \phi}{r} \\
\text{So } \frac{d}{dy} &= \sin \theta \sin \phi \partial_r + \frac{\cos \theta \sin \phi}{r} \partial_\theta + \frac{\csc \theta \cos \phi}{r} \partial_\phi \\
\partial_z r &= \frac{\partial z}{r} = \cos \theta \\
\partial_z \theta &= \frac{\partial z}{\sqrt{x^2 + y^2}} = \frac{\csc \theta \cos \phi}{r} \\
\partial_z \phi &= \frac{\partial z}{x^2 + y^2} = \frac{\csc \theta \cos \phi}{r} \\
\text{So } \frac{d}{dz} &= \cos \theta \partial_r + \frac{\csc \theta \cos \phi}{r} \partial_\theta + \frac{\csc \theta \cos \phi}{r} \partial_\phi.
\end{align*}
\]
\[\begin{aligned}
\partial_z \theta &= -\frac{z^2}{r^2} \sqrt{\frac{x^2+y^2}{z^2}} = -\frac{\sin \theta}{r} \\
\partial_z \phi &= 0 \\
\text{So } \frac{d}{dz} &= \cos \theta \partial_r - \frac{\sin \theta}{r} \partial_\theta
\end{aligned} \]

Now

\[\langle r \theta \phi | L_x | \psi \rangle = -i\hbar \left(y \frac{d}{dz} - z \frac{d}{dy} \right) \langle r \theta \phi | \psi \rangle \]

So we can say

\[L_x = i\hbar \left(y \frac{d}{dz} - z \frac{d}{dy} \right) \]

\[= -i\hbar \left(r \sin \theta \cos \theta \sin \phi \partial_r - \sin^2 \theta \sin \phi \partial_\theta - r \sin \theta \cos \theta \partial_r - \cos^2 \theta \sin \phi \partial_\theta + \cot \theta \cos \phi \partial_\phi \right) \]

Which means

\[\langle r \theta \phi | L_x | \psi \rangle = -i\hbar \left(-\sin \phi \partial_\theta - \cot \theta \cos \phi \partial_\phi \right) \langle r \theta \phi | \psi \rangle \]

Similarly we can say

\[L_y = -i\hbar \left(\frac{d}{dx} - \frac{d}{dz} \right) \]

\[= -i\hbar \left(r \sin \theta \cos \theta \cos \phi \partial_r + \cos^2 \theta \cos \phi \partial_\theta - \cot \theta \sin \phi \partial_\theta - r \sin \theta \cos \theta \cos \phi \partial_r + \sin^2 \theta \cos \phi \partial_\theta \right) \]

so that

\[\langle r \theta \phi | L_y | \psi \rangle = -i\hbar \left(\cos \phi \partial_\theta - \cot \theta \sin \phi \partial_\phi \right) \langle r \theta \phi | \psi \rangle \]

Lastly, we have

\[L_z = -i\hbar \left(\frac{d}{dy} - \frac{d}{dx} \right) \]

\[= -i\hbar \left(r \sin^2 \theta \sin \phi \cos \phi \partial_r + \sin \theta \cos \theta \sin \phi \cos \phi \partial_\theta + \cos^2 \phi \partial_\phi \\
+ r \sin^2 \theta \sin \phi \cos \phi \partial_r - \sin \theta \cos \theta \sin \phi \cos \phi \partial_\theta + \sin^2 \phi \partial_\phi \right) \]

so that

\[\langle r \theta \phi | L_z | \psi \rangle = -i\hbar \partial_\phi \langle r \theta \phi | \psi \rangle \]
2. [15pts] From your previous answer and the definition $L^2 = L_x^2 + L_y^2 + L_z^2$, prove that

$$\langle r\theta\phi|L^2|\psi\rangle = -\hbar^2 \left(\frac{1}{\sin\theta} \frac{\partial}{\partial\theta} \sin\theta \frac{\partial}{\partial\theta} + \frac{1}{\sin^2\theta} \frac{\partial^2}{\partial^2\phi} \right) \langle r\theta\phi|\psi\rangle.$$

$$L^2 = -\hbar^2 \left[(\sin\phi \partial_\theta + \cot\theta \cos\phi \partial_\phi)(\sin\phi \partial_\theta + \cot\theta \cos\phi \partial_\phi)
+ (\cos\phi \partial_\theta - \cot\theta \sin\phi \partial_\phi)(\cos\phi \partial_\theta - \cot\theta \sin\phi \partial_\phi) + \partial_\phi^2 \right]$$

$$= -\hbar^2 \left[\sin^2\phi \partial_\theta^2 + \cot\theta \sin\phi \cos\phi \partial_\theta \partial_\phi - \csc^2\theta \sin\phi \cos\phi \partial_\theta + \cot\theta \sin\phi \cos\phi \partial_\theta \partial_\phi + \cot^2\theta \cos^2\phi \partial_\phi^2 - \cot^2\theta \cos\phi \sin\phi \partial_\theta + \cos^2\phi \partial_\theta^2 - \cot \theta \cos\phi \sin\phi \partial_\phi \partial_\theta + \cot \theta \sin^2\phi \partial_\theta \partial_\phi + \cot^2 \theta \sin^2\theta \partial_\phi^2 + \cot^2 \theta \sin\phi \cos\phi \partial_\theta + \partial_\phi^2 \right]$$

$$= -\hbar^2 \left[\partial_\theta^2 + \cot\theta \partial_\theta + (1 + \cot^2\theta) \partial_\phi^2 \right]$$

Noting that

$$\frac{1}{\sin\theta} \partial_\theta \sin\theta \partial_\theta = \partial_\theta^2 + \cot\theta \partial_\theta$$

and

$$1 + \cot^2\theta = \frac{1}{\sin^2\theta}$$

the proof is complete.
3. [10 pts] We can factorize the Hilbert space of a 3-D particle into radial and angular Hilbert spaces, \(\mathcal{H}^{(3)} = \mathcal{H}^{(r)} \otimes \mathcal{H}^{(\Omega)} \). Two alternate basis sets that both span \(\mathcal{H}^{(\Omega)} \) are \(\{ |\theta \phi \rangle \} \) and \(\{ |\ell m \rangle \} \). As the angular momentum operator lives entirely in \(\mathcal{H}^{(\Omega)} \), we can use our results from problem 11.1 to derive an expression for \(\langle \theta \phi | L_z | \ell m \rangle \). Combine this with the formula \(L_z | \ell m \rangle = \hbar m | \ell m \rangle \), to derive and then solve a differential equation for the \(\phi \)-dependence of \(\langle \theta \phi | \ell m \rangle \). Your solution should give \(\langle \theta \phi | \ell m \rangle \) in terms of the as of yet unspecified initial condition \(\langle \theta | \ell m \rangle \equiv \langle \theta, \phi | \ell m \rangle |_{\phi=0} \). What restrictions does this solution impose on the quantum number \(m \), which describes the \(z \)-component of the orbital angular momentum? Since \(m_{\text{max}} = \ell \), what restrictions are then placed on the total angular momentum quantum number \(\ell \)?

\[
\langle \theta \phi | L_z | \ell m \rangle = -i\hbar \frac{\partial}{\partial \phi} \langle \theta \phi | \ell m \rangle
\]

and

\[
\langle \theta \phi | L_z | \ell m \rangle = \hbar m \langle \theta \phi | \ell m \rangle
\]

Thus

\[-i\hbar \frac{\partial}{\partial \phi} \langle \theta \phi | \ell m \rangle = \hbar m \langle \theta \phi | \ell m \rangle\]

The solution to this simple first-order differential equation is

\[
\langle \theta \phi | \ell m \rangle = \langle \theta 0 | \ell m \rangle e^{im\phi}
\]

Since the wave-function must be single valued, we require \(m \) to be a whole integer. As \(m_{\text{max}} = \ell \), this implies that \(\ell \) must be a whole integer also.
4. [10 pts] Using $L_\pm = L_x \pm i L_y$ we can use the relation $L_+ |\ell, \ell\rangle = 0$ and the expressions from problem 11.1 to write a differential equation for $\langle \theta \phi |\ell, \ell\rangle$. Plug in your solution from 11.3 for the ϕ-dependence, and show that the solution is $\langle \theta \phi |\ell, \ell\rangle = c_\ell e^{i \ell \phi} \sin^\ell \theta$. Determine the value of the normalization coefficient c_ℓ by performing the necessary integral.

We have $\langle \theta \phi |L_+|\ell, \ell\rangle = 0$
This implies $\langle \theta \phi |L_x|\ell, \ell\rangle + i \langle \theta \phi |L_y|\ell, \ell\rangle = 0$
Using the expressions from 11.1 gives $(- \sin \theta \partial_\theta - \cot \theta \cos \phi \partial_\phi + i \cos \phi \partial_\phi)\langle \theta \phi |\ell, \ell\rangle = 0$
This simplifies to $(i (\cos \phi + i \sin \phi) \partial_\theta - \cot \theta (\cos \phi + i \sin \phi) \partial_\phi)\langle \theta \phi |\ell, \ell\rangle = 0$
Factoring out the $e^{i \phi}$ gives $(i \partial_\theta - \cot \theta \partial_\phi)\langle \theta \phi |\ell, \ell\rangle = 0$
Plugging in the solution from 11.3 gives $(i \partial_\theta - i \ell \cot \theta)\langle \theta 0 |\ell, \ell\rangle e^{-i \ell \phi} = 0$
which reduces to $\partial_\theta \langle \theta 0 |\ell, \ell\rangle = \ell \cot \theta \langle \theta 0 |\ell, \ell\rangle$

Now $\partial_\theta \sin^\ell \theta = \ell \sin^{\ell-1} \theta \cos \theta = \ell \cot \theta \sin^\ell \theta$
So the solution is $\langle \theta \phi |\ell, \ell\rangle = c_\ell e^{i \ell \phi} \sin^\ell \theta$

The normalization integral is $\int_0^\pi \sin \theta d\theta \int_0^{2\pi} d\phi \langle |\theta \phi |\ell, \ell\rangle^2 = 1$
With our solution this becomes $|c_\ell|^2 \int_0^\pi \sin \theta d\theta \int_0^{2\pi} d\phi \sin^{2\ell} \theta = 1$
Performing the phi integral gives $2\pi |c_\ell|^2 \int_0^\pi \sin \theta d\theta \sin^{2\ell} \theta = 1$
Substitution with $u = \cos \theta$ gives $2\pi |c_\ell|^2 \int_0^1 du (1 - u^2)^\ell = 1$
Since the integrand is even, this reduces to $4\pi |c_\ell|^2 \int_0^1 du (1 - u^2)^\ell = 1$
From Mathematica we get $2\pi |c_\ell|^2 \frac{\Gamma(\ell+1/2)\Gamma(\ell+1)}{\Gamma(\ell+3/2)\Gamma(\ell+1)} = 1$
which gives $c_\ell = \sqrt{\frac{\Gamma(\ell+3/2)}{2\pi \Gamma(\ell+1)^2}}$

Thus we have $\langle \theta \phi |\ell, \ell\rangle = \sqrt{\frac{\Gamma(\ell+3/2)}{2\pi \Gamma(\ell+1)^2}} \sin^\ell \theta e^{i \ell \phi}$

For the special case $\ell = 3$ this gives $\langle \theta \phi |33\rangle = \frac{1}{8} e^{3i \phi} \sqrt{\frac{35}{\pi}} \sin^3 \theta$, which agrees with the spherical harmonic $Y_3^3(\theta, \phi)$ up to a non-physical phase factor.
5. [10 pts] Using \(L_- |\ell m\rangle = \hbar \sqrt{\ell(\ell + 1) - m(m - 1)} |\ell, m - 1\rangle \) together with your previous answers to derive an expression for \(\langle \theta \phi | \ell, m - 1 \rangle \) in terms of \(\langle \theta \phi | \ell m \rangle \). Explain how in principle you can now recursively calculate the value of the spherical harmonic \(Y^m_\ell(\theta \phi) \equiv \langle \theta \phi | \ell m \rangle \) for any \(\theta \) and \(\phi \) and for any \(\ell \) and \(m \). Follow your procedure to derive properly normalized expressions for spherical harmonics for the case \(\ell = 1, m = -1, 0, 1 \).

To construct the other \(m \) states for the same \(\ell \), we can begin from the expression

\[
\langle \theta \phi | L_- |\ell m\rangle = \hbar \sqrt{\ell(\ell + 1)(\ell - m + 1)} \langle \theta \phi | \ell, m - 1 \rangle
\]

Now

\[
\langle \theta \phi | L_- |\ell m\rangle = \langle \theta \phi | L_x |\ell m\rangle - i \langle \theta \phi | L_y |\ell m\rangle
\]
\[
= -i \hbar (- \sin \phi \partial_\theta - \cot \theta \cos \phi \partial_\phi) \langle \theta \phi | \ell m \rangle - \hbar (\cos \phi \partial_\theta - \cot \theta \sin \phi \partial_\phi) \langle \theta \phi | \ell m \rangle
\]
\[
= \hbar e^{-i\phi} (- \partial_\theta + i \cot \theta \partial_\phi) \langle \theta \phi | \ell m \rangle
\]

Putting the pieces together gives

\[
\langle \theta \phi | \ell, m - 1 \rangle = \frac{e^{-i\phi} (- \partial_\theta + i \cot \theta \partial_\phi)}{\sqrt{\ell + m} (\ell - m + 1)} \langle \theta \phi | \ell m \rangle
\]

Starting from our expression for \(\langle \theta \phi | \ell \ell \rangle \), we can find \(\langle \theta \phi | \ell, \ell - 1 \rangle \) by applying the above differential formula. Successive iterations will then generate all the remaining \(\langle \theta \phi | \ell m \rangle \) states.
6. [10 pts] A particle of mass M is constrained to move on a spherical surface of radius a.

Does the system live in $\mathcal{H}^{(3)}$, $\mathcal{H}^{(r)}$, or $\mathcal{H}^{(\Omega)}$? What is the Hamiltonian? What are the energy levels and degeneracies? What are the wavefunctions of the energy eigenstates?

Because the radial motion is constrained to a fixed value, it is only necessary to consider the dynamics in $\mathcal{H}^{(\Omega)}$.

The Hamiltonian is then

$$H = \frac{L^2}{2Ma^2}$$

Choosing simultaneous eigenstates of L^2 and L_z, we have

$$H|\ell,m\rangle = \frac{\hbar^2\ell(\ell + 1)}{2Ma^2}|\ell,m\rangle$$

so that

$$E_\ell = \frac{\hbar^2\ell(\ell + 1)}{2Ma^2}$$

and

$$d_\ell = 2\ell + 1$$

The wavefunctions are the spherical harmonics

$$\langle \theta\phi|\ell,m\rangle = Y^\ell_m(\theta,\phi)$$
7. [10 pts] Two particles of mass \(M_1 \) and \(M_2 \) are attached to a massless rigid rod of length \(d \). The rod is attached to an axle at its center-of-mass, and is free to rotate without friction in the x-y plane.

Describe the Hilbert space of the system and then write the Hamiltonian. What are the energy levels and degeneracies? What are the wavefunctions of the energy eigenstates?

Only a single angle, \(\phi \) is required to specify the state of the system, where \(\phi \) is the azimuthal angle, thus the Hilbert space is \(\mathcal{H}(\phi) \).

The Hamiltonian is then
\[
H = \frac{L_z^2}{2I}
\]
where
\[
I = 2M \left(\frac{d}{2} \right)^2 = \frac{Md^2}{2}
\]
is the moment of inertia. This gives
\[
H = \frac{L_z^2}{Md^2}
\]
The energy levels are then
\[
E_m = \frac{\hbar^2 m^2}{Md^2}
\]
where \(m = 0, \pm 1, \pm 2, \pm 3, \ldots \)
The energy levels all have a degeneracy of 2, except for \(E_0 \), which is not degenerate.

The wavefunctions are given by
\[
\langle \phi | m \rangle = \frac{e^{im\phi}}{\sqrt{2\pi}}
\]
8. [10 pts] For a two-particle system, the transformation to relative and center-of-mass coordinates is defined by

\[\vec{R} = \vec{R}_1 - \vec{R}_2 \]
\[\vec{R}_{CM} = \frac{m_1 \vec{R}_1 + m_2 \vec{R}_2}{m_1 + m_2} \]

The corresponding momenta are defined by

\[\vec{P} = \mu \frac{d}{dt} \vec{R} \]
\[\vec{P}_{CM} = M \frac{d}{dt} \vec{R}_{CM} \]

where \(\mu = \frac{m_1 m_2}{M} \) is the reduced mass, and \(M = m_1 + m_2 \) is the total mass. Invert these expressions to write \(\vec{R}_1, \vec{R}_2, \vec{P}_1, \) and \(\vec{P}_2 \) in terms of \(\vec{R}, \vec{R}_{CM}, \vec{P}, \) and \(\vec{P}_{CM} \).

The solutions are

\[\vec{R}_1 = \vec{R}_{CM} + \frac{m_2}{M} \vec{R} \]
\[\vec{R}_2 = \vec{R}_{CM} - \frac{m_1}{M} \vec{R} \]

Writing \(\vec{P} \) and \(\vec{P}_{CM} \) in terms of \(\vec{P}_1 \) and \(\vec{P}_2 \) gives

\[\vec{P} = \frac{m_2 \vec{P}_1 - m_1 \vec{P}_2}{m_1 + m_2} \]
\[\vec{P}_{CM} = \vec{P}_1 + \vec{P}_2 \]

Inverting this gives

\[\vec{P}_1 = \frac{m_1}{M} \vec{P}_{CM} + \vec{P} \]
\[\vec{P}_2 = \frac{m_2}{M} \vec{P}_{CM} - \vec{P} \]