Top Trigger Strategy in ATLAS

Patrick Ryan

Workshop on Top Physics
Grenoble

18 Oct 2007
Outline

• Top Physics w.r.t. triggering
• The ATLAS Trigger
• ATLAS Trigger Menus
• Top Trigger Studies
 • Level 1 ttbar triggers at 10^{31} pb$^{-1}$
 • ttbar triggers at 10^{33} pb$^{-1}$
 • Single top lepton triggers
• Summary
ttbar Decays

- **Semi-leptonic**
 - One W decays hadronically and one W decays leptonically
 - 1 lepton + 4 jets in final state

- **Fully leptonic**
 - Both Ws decay leptonically
 - 2 leptons + 2 jets in final state

- **Fully hadronic**
 - Both Ws decay hadronically
 - 0 leptons + 6 jets in final state
• **Leptonic Single Top**
 - **s-channel**: 1 lepton + 2 jets
 - **t-channel**: 1 lepton + 2 jets OR 1 lepton + 3 jets
 - **Wt**: 1 lepton + 3 jets OR 2 leptons + 1 jet

• **Hadronic Single Top**
 - Hadronic W decay or hadronic \(\tau\) decay
 - Difficult to distinguish from backgrounds
 - Not studied yet
Triggering on Top Events

• All aspects of trigger important to top physics
• Electron and muon triggers vital for main top decays
 • High-p_T decay products from W allows for high-p_T lepton triggers
 • High efficiency of electron and muon triggers necessary
 • Most important triggers for early running
 • Related to processes visible at lower luminosities
 • Processes with W, Z, and top can help calibrate detector
• Multi-jet triggers can enhance acceptance
 • Can be used in combination with electron and muon triggers
 • Important for top physics at higher luminosities
• Missing E_T triggers can enhance acceptance
• b-jet trigger not crucial for $ttbar$
 • May be useful to study fully hadronic single top events
ATLAS Trigger

- **Level 1 (2.5 µs)**
 - Custom hardware
 - Maximum 1% deadtime
 - Reduced granularity
 - Uses subset of detectors
 - Finds p_T, Missing E_T, Total E_T

- **Level 2 (30 ms)**
 - Commercial computers
 - Seeded by L1 (region of interest)
 - Full granularity and precision
 - All detector components used

- **Event Filter (1 s)**
 - Commercial processing farm
 - Operates on fully built events
 - Standard ATLAS reconstruction
 - Event size after EF: 1.5 MByte

Bunch Crossing: 40 MHz
Interaction: 1 GHz

After L1: 75 kHz
After L2: 3.5 kHz
After EF: 200 Hz
ATLAS Trigger

- Trigger Item is a combination of triggers at each level
- Event must pass L1, L2, and EF associated with trigger item
- Trigger Threshold
 - p_T of an object for which the trigger is about 90% efficient (in most cases)
 - Actual p_T cut is less than the threshold
 - Example: The p_T cut for L2_mu20 is 17.5 GeV
 - L1 threshold represents actual cut for some triggers
- Isolation requirement
 - Help distinguish leptonic and hadronic signals
 - Available at L2 and EF of leptonic triggers
 - May not be applied to muon triggers in early running
- Example: Trigger Item e25i
 - 1 electron with threshold of 25 GeV
 - Isolation requirement
 - Level 1: L1_EM25 Level 2: L2_e25i Event Filter: EF_e25i
• A Trigger Menu is a collection of trigger items
• Several Trigger Menu configurations and versions
 • Different versions for different software releases
 • Different configurations for startup \((10^{31})\) and full \((10^{33})\) lumi
 • https://twiki.cern.ch/twiki/bin/view/Atlas/TriggerMenuVersions

• Triggers can be prescaled
 • Necessary when a trigger has a high rate
 • Prescale of \(X\) means \(1/X\) events from trigger item are accepted

• Express Stream
 • Small subset of the physics data (5\% to 15\%)
 • Reconstructed in less than 24 hours
 • Allows for immediate feedback before full reconstruction starts
 • Not for published physics results
<table>
<thead>
<tr>
<th>Trigger Item</th>
<th>Level 1</th>
<th>Level 2</th>
<th>Event Filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>mu20</td>
<td>L1_MU20</td>
<td>L2_mu20i</td>
<td>EF_mu20i</td>
</tr>
<tr>
<td>e25i</td>
<td>L1_EM25</td>
<td>L2_e25i</td>
<td>EF_e25i</td>
</tr>
<tr>
<td>e60</td>
<td>L1_EM60</td>
<td>L2_e60</td>
<td>EF_e60</td>
</tr>
<tr>
<td>jet160</td>
<td>L1_J45</td>
<td>L2_jet160</td>
<td>EF_jet160</td>
</tr>
<tr>
<td>2jet120</td>
<td>L1_2J45</td>
<td>L2_jet120L2jet120</td>
<td>EF_jet120EF_jet120</td>
</tr>
<tr>
<td>3jet65</td>
<td>L1_3J45</td>
<td>L2_jet65L2_jet65L2_jet65</td>
<td>EF_jet65EF_jet65EF_jet65</td>
</tr>
<tr>
<td>4jet50</td>
<td>L1_4J45</td>
<td>L2_jet50L2_jet50L2_jet50L2_jet50</td>
<td>EF_jet50EF_jet50EF_jet50EF_jet50</td>
</tr>
</tbody>
</table>
L1 ttbar triggers at 10^{31} pb^{-1}

Introduction

- **10^{31} Trigger Menu** designed for commissioning
 - Differs from 10^{33} menu in the prescale values
 - Subject to change

- **Reasons for studying 10^{31} Menu** are to investigate
 - Efficiency
 - Redundancy
 - Overlaps

- **Single Object Triggers at Level 1**
 - Study items which are not prescaled
 - Muon, EM, Jet, Tau, Missing E_T and Total Energy triggers investigated

- **Combined Object Triggers at Level 1**
 - Jet items + Missing E_T and Muon items
 - Tau item + Missing E_T item
 - Combine Jet triggers + other Jet triggers
L1 ttbar triggers at 10^{31} pb$^{-1}$

Efficiencies

- **Highest efficiency of combined triggers from Jets + Missing E_T**
 - L1_2J42_XE30 (60%) and L1_J70_XE30 (54%) should be used in express stream

4000 Events with no offline selection

OR: Only items from trigger menu

C: items used in combined triggers

J. Thomas

L1_3J30_4J23 and L1_5J23 may be substituted for L1_4J23 if rate is too high

Patrick Ryan, MSU Top Trigger Strategy in ATLAS Workshop on Top Physics, 18 Oct 2007 - 11
Top Trigger Strategy in ATLAS

Workshop on Top Physics, 18 Oct 2007 - 12

Patrick Ryan, MSU

L1 ttbar triggers at 10^{31} pb$^{-1}$

Trigger Overlaps

<table>
<thead>
<tr>
<th>Trigger Combination</th>
<th>Percentages</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1_TAU25_XE40</td>
<td>93, 100, 90, 100, 100, 100, 92, 100, 86, 100, 100, 100</td>
</tr>
<tr>
<td>L1_J10_MU6</td>
<td>60, 66, 55, 69, 100, 100, 51, 58, 48, 100, 100, 64</td>
</tr>
<tr>
<td>L1_J42_XE30_MU11</td>
<td>42, 55, 42, 47, 100, 100, 40, 49, 41, 100, 100, 54</td>
</tr>
<tr>
<td>L1_J70_XE30</td>
<td>100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100</td>
</tr>
<tr>
<td>L1_2J42_XE30</td>
<td>100, 98, 92, 100, 100, 96, 100, 87, 100, 100, 100</td>
</tr>
<tr>
<td>L1_EM100 passHLT</td>
<td>48, 40, 63, 44, 34, 38, 100, 36, 33, 33, 35, 35</td>
</tr>
<tr>
<td>L1_2MU6</td>
<td>12, 13, 12, 14, 46, 100, 11, 12, 10, 32, 40, 13</td>
</tr>
<tr>
<td>L1_MU20</td>
<td>44, 51, 41, 51, 100, 100, 38, 44, 37, 100, 100, 49</td>
</tr>
<tr>
<td>L1_4J23</td>
<td>100, 71, 79, 100, 87, 92, 84, 84, 64, 73, 92, 78</td>
</tr>
<tr>
<td>L1_J100</td>
<td>82, 70, 100, 73, 66, 69, 100, 62, 59, 61, 68, 61</td>
</tr>
<tr>
<td>L1_XE70</td>
<td>53, 100, 59, 55, 69, 66, 61, 56, 50, 67, 68, 66</td>
</tr>
<tr>
<td>L1_TE380</td>
<td>100, 77, 100, 100, 86, 91, 100, 87, 72, 75, 90, 78</td>
</tr>
</tbody>
</table>

- Low percentage: useful combination (if one item has a high acceptance)
 - Most useful combinations include lepton triggers
- High percentage: redundancy

Semilep + Dilep ttbar

4000 Events with no offline selection

% of events triggered by x-axis items also triggered by y-axis items
Lepton triggers have low efficiencies (mu20i: 27% and e25i: 22%)

Jet triggers have low efficiencies
 - Between 9 and 14% depending the number and \(p_T \) of jets
mu20i has high efficiency (72%)
Jet triggers have low efficiencies (between 5% and 12%)
OR of all triggers has 93% efficiency
 - Jet, Missing E_T, and tau triggers can help raise efficiency
Top Trigger Strategy in ATLAS

Workshop on Top Physics, 18 Oct 2007 - 15

Patrick Ryan, MSU

Semilep + Dilep ttbar

- **Event Selection**
 - 1 electron
 - $p_T > 20$ GeV
 - $|\eta| < 2.5$
 - 4 Jets with
 - $E_T > 20$ GeV
 - Jet $|\eta| < 2.5$
 - Missing $E_T > 20$ GeV
 - 1 or more b jets
 - No Electron in gap

- **Trigger Item**
 - 1 electron
 - 4 Jets
 - Missing E_T
 - 1 or more b jets
 - No Electron in gap

- **Efficiency**
 - e25i has high eff (73%) while e60 has reasonably low eff (31%)
 - Jet triggers have low efficiencies (between 6% and 14%)
 - OR of all triggers has 91% efficiency
 - Jet, Missing E_T, and tau triggers can help raise efficiency
• **Samples studied**
 • Wt channel
 • s-channel
 • t-channel
 • ttbar (background for single top)

• **Electron and Muon Triggers studied**

• **Single Top Event Selection**
 • **Lepton**
 • At least 1 isolated μ with $p_T > 20$ GeV OR 1 e with $p_T > 25$ GeV
 • $-2.5 < \eta < 2.5$
 • No secondary lepton
 • **Jets**
 • $2 \leq N_{\text{jet}} \leq 4$
 • $p_T^{\text{Jet}1} > 30$ GeV, $p_T^{\text{Jet}2} > 30$ GeV, $p_T^{\text{Jet}3} > 15$ GeV, $p_T^{\text{Jet}4} > 15$ GeV
 • At least 1 b-tagged jet with $p_T > 30$ GeV and $|\eta| < 2.5$
 • $E_T^{\text{Miss}} > 20$ GeV
 • No electrons in gap regions (-1.65 < η < -1.35 and 1.35 < η < 1.65)
• **Truth Efficiency**
 - Truth MC sample
 - No event selection
 - mu6 to mu20: 20% decrease
 - ttbar (blue) slightly higher

• **Reconstructed Efficiency**
 - Reconstructed MC sample
 - Single Top event selection
 - mu6 to mu20: 10% decrease
 - All channels similar
Top Trigger Strategy in ATLAS
Workshop on Top Physics, 18 Oct 2007

Patrick Ryan, MSU

• Reconstructed MC events
• mu6 Turn-on
 • Turn-on behavior below 10 GeV
 • Wt channel has higher efficiency
• mu20 Turn-on
 • Between 10 and 25 GeV
 • Channels similar at low p_T
 • Wt higher at high p_T

Use mu20 in single top selection
Single Top Triggers
Electron Efficiency

Electron Trigger Efficiency: Full Trigger

- Truth Efficiency
 - Truth MC sample
 - No event selection
 - e25i to e60: 15% decrease
 - All channels similar

- Reconstructed Efficiency
 - Reconstructed MC sample
 - Single Top event selection
 - e25i to e60: 60% decrease
 - Channels differ at e60
 - t and s-channel: 22% eff
 - Wt and ttbar 40% eff

e25i greater than 90% efficient

Patrick Ryan, MSU
Top Trigger Strategy in ATLAS
Workshop on Top Physics, 18 Oct 2007 - 19
Single Top Triggers
Electron Turn-on Curve

- **Reconstructed MC events**
- **e25i Turn-on**
 - Between 10 and 25 GeV
 - Channels similar at low p_T
 - Channels differ at high p_T
- **e60 Turn-on**
 - Between 10 and 60 GeV
 - Channels differ at low p_T
 - Wt (black) & ttbar (purple) differ from s-channel (red) & t-channel (blue)
- Curves cross at 60 GeV
 - e60 has no isolation cut
- **e25i OR e60**
 - About 3% efficiency gain
 - Includes “tails” of top

Use e25i OR e60 in single top selection
Summary

- Lepton triggers most critical for top selection
 - Muon: mu20i
 - Electron: e25i and e60

- Jet and E_T^{Miss} triggers improve acceptance
 - Use in combination with lepton triggers

- $t\bar{t}$ triggers
 - mu20i: 72% efficiency
 - e25i: 73% efficiency

- Single Top triggers
 - mu20i: 80% efficiency
 - e25i OR e60: 95% efficiency