Photoproduction of Events with Rapidity Gaps Between Jets with ZEUS at HERA

Patrick Ryan

University of Wisconsin

SMU Seminar
April 10, 2006
Rapidity Gaps Between Jets in Photoproduction

Photoproduction

Diffraction

Hard Diffractive Photoproduction

HERA and ZEUS

Simulation of photoproduction events

Reconstruction

Event Selection

Comparisons between Data and MC

Results
Direct & Resolved Photoproduction

Direct Photoproduction

\[e \rightarrow e' \]

\[\gamma \rightarrow q \]

\[P \rightarrow \text{Proton Remnant} \]

Boson-Gluon Fusion

- Direct: \(\gamma \) couples directly to parton in proton
- Resolved: parton from \(\gamma \) couples to parton in proton

Resolved Photoproduction

\[e \rightarrow e' \]

\[\gamma \rightarrow g \]

\[P \rightarrow \text{Proton Remnant} \]

\[gg \rightarrow qq \]
Diffraction in ep Collisions

- Two “definitions” of diffraction
 - Final state particles preserve quantum numbers of associated initial state particles
 - Presence of rapidity gap (next slide)
- Exchange object: Pomeron
 - Quantum numbers of vacuum
 - Does not radiate color charge
- Small momentum transfer at p vertex
 - Soft diffraction: No hard scale exists
 - Hard diffraction: A hard scale exists
 - Example: Large momentum transfer between IP and quark
 - Perturbative QCD (pQCD) is applicable
Hard Diffractive Photoproduction

Rapidity Gap Between Hadron & Proton Remnant

\[e(k) \rightarrow \gamma(q) \rightarrow e'(k') \]

Subject of this analysis

Study the nature of the Pomeron
- Observe Color-Singlet (CS) exchange

Hard Scale allows application of pQCD to diffractive process
Rapidity Gaps between Final State Hadrons

- 2 Sources of Rapidity Gaps between Final State Hadrons
 - Diffraction
 - Color-Singlet Exchange: Pomeron
 - Lack of color radiation produces gap
 - Particle Fluctuations
 - Color-Octet Exchange (non-diffractive)
 - Fluctuations in particle multiplicity produces gap
The Gap Fraction $f(\Delta \eta)$

Dijet Events with large Rapidity separation between jets & $E_T^{\text{Gap}} < E_T^{\text{Cut}}$

$$f(\Delta \eta) = \frac{d \sigma_{\text{gap}} / d \Delta \eta}{d \sigma / d \Delta \eta}$$

Expectation for Behavior of Gap Fraction

(J. D. Bjorken, V. Del Duca, W.-K. Tang)

$$f_{\text{gap}}$$

All Dijet Events with large Rapidity separation between jets

$$\sigma_{\text{gap}} = \sigma_{\text{gap singlet}} + \sigma_{\text{gap non-singlet}}$$

- **Color Singlet**
 - Gap created by lack of color flow
 - $f(\Delta \eta)$ constant in $\Delta \eta$

- **Color Non-Singlet**
 - Gap created by multiplicity fluctuations
 - $f(\Delta \eta)$ decreases exponentially with $\Delta \eta$
HERA

- Beam Energy
 - 820 GeV Protons (1992-97)
 - 920 GeV Protons (since 1998)
 - 27.5 GeV e+ or e-
 - CMS: ~300/320 GeV
 - Equivalent to 50 TeV Fixed Target experiment
- 96 ns crossing time
- 220 bunches
 - Not all filled
- Currents:
 - ~90 mA Protons
 - ~40 mA Leptons
- Instantaneous Lumi
 - ~4×10^{31} cm$^{-2}$s$^{-1}$

DESY
Hamburg, Germany

Patrick Ryan, Univ. of Wisconsin
Rapidity Gaps Between Jets in PHP
SMU Seminar, April 10, 2006 - 8
- **HERA I 1992 – 2000**
 - e^{-}: 27 pb$^{-1}$ e^+: 166 pb$^{-1}$

- **HERA II 2002 – 2007**
 - 5x lumi and polarization
 - e^{-}: 205 pb$^{-1}$ e^+: 90 pb$^{-1}$
Central Tracking Detector

- Cylindrical Drift Chamber in 1.43 T magnetic field
- Covers $15^\circ < \theta < 164^\circ$ (-1.96 < η < 2.04)
- Organization
 - 16 azimuthal sectors
 - 9 concentric superlayers
 - 8 radial layers in a superlayer
 - Between 32-96 cells in a superlayer
- Resolutions
 - Track transverse momentum
 - $\sigma/\rho_T = [(0.005\rho_T)^2 + (0.0016)^2]^{1/2}$
 - Vertex Position
 - x and y: accurate to 1 mm
 - z: accurate to 4 mm

Patrick Ryan, Univ. of Wisconsin

Rapidity Gaps Between Jets in PHP

SMU Seminar, April 10, 2006 - 11
Uranium Calorimeter

- Composed of plastic scintillator and depleted uranium
- Compensating
 - Equal response to electrons and hadrons of same energy
- Sampling
 - Most energy absorbed by U
- Segmented
 - 3 Regions: FCAL, BCAL, RCAL
 - Regions → Modules → Towers → Cells (smallest geometrical unit)
 - Hadronic and Electromagnetic Cells
- Resolution (from test beam)
 - Electromagnetic: $\sigma = 0.18/\sqrt{E(\text{GeV})}$
 - Hadronic: $\sigma = 0.35/\sqrt{E(\text{GeV})}$
ZEUS Trigger

- **First Level** (4.4 μs)
 - Dedicated custom hardware
 - Pipelined without deadtime
 - Global & regional energy sums
 - Isolated e and μ recognition
 - Track quality information

- **Second Level** (6 ms)
 - Commodity transputers
 - Calorimeter timing cuts
 - Cuts on $E-p_z$ and E_T
 - Vertex and tracking information
 - Simple physics filters

- **Third Level** (300 ms)
 - Commodity processor farm
 - Full event info available
 - Refined jet and lepton finding
 - Advanced physics filters

Crossing: 10^7 Hz
After FLT: \sim1000 Hz
After SLT: \sim100 Hz
After TLT: \sim1 Hz
Simulation of γp Events

PYTHIA

- Most accurate hadronization model possible
 - Many input parameters
- Adjustable $p_T^{\text{min}1}$ and $p_T^{\text{min}2}$
 - $p_T^{\text{min}1}$: p_T^{min} of hardest interaction
 - $p_T^{\text{min}2}$: p_T^{min} of soft secondary interactions – Multi-Parton Interactions
- QCD Radiation: Matrix Element+Parton Shower (MEPS)
- Hadronization: String Model
- Multi-Parton Interactions in resolved MC
- Color-singlet exchange in PYTHIA
 - Use high-$t\gamma$ exchange for qq scattering in LO resolved process
 - Reproduce topology of rapidity gap events
 - Not a source of events with rapidity gaps in hard diffractive γp
• Simplest universal hadronization model
 • Few input parameters
• Adjustable $p_T^{\text{min}1}$ (but not $p_T^{\text{min}2}$)
• QCD Radiation: MEPS
• Hadronization: Cluster Model
• JIMMY package used to simulate MPIs
 • Multi-Parton Interactions in resolved & CS MC
• Color-singlet exchange in HERWIG
 • BFKL pomeron as exchange object
Reconstruction

- **Tracks**: Use only information from CTD
- **Vertex**: Use CTD tracks fit to 5-parameter Helix model
- **Calorimeter**
 - Use cell position, magnitude of PMT pulse, time of PMT pulse
 - Island formation: Cells merged based on location and size of energy deposits
- **e⁻/e⁺**: SINISTRA95 Neural Network finder
- **Energy Flow Objects (EFOs)**
 - Combine track and calorimeter information for hadrons
 - CTD has better angular resolution than CAL
 - CTD has better energy resolution at low energy than CAL
k_T Cluster Jet Algorithm

- **Historically used in e^+e^- experiments**

- **Procedure**
 - For every object i and pair of objects i,j compute
 - $d_i^2 = E_{T,i}^2$ (distance to beamline in momentum space)
 - $d_{i,j}^2 = \min\{E_{T,i}^2, E_{T,j}^2\}[\Delta \eta^2 + \Delta \phi^2]^{1/2}$ (distance between objects)
 - Calculate $\min\{d_i^2, d_{i,j}^2\}$ for all objects
 - If $d_{i,j}^2$ is the smallest, combine objects i and j into a new object
 - If d_i^2 is the smallest, object i is a jet

- **Advantages**
 - Collinear and infrared safe
 - No problems with overlapping jets
 - Distributions can be predicted by QCD
Kinematic Variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>Electron Method</th>
<th>Jacquet-Blondel Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ</td>
<td>$1 - \frac{E'_e}{2E_e} (1 - \cos \theta_e)$</td>
<td>$\frac{\sum_i (E_i - p_{z,i})}{2E_e}$</td>
</tr>
<tr>
<td>Q^2</td>
<td>$2E_eE'_e (1 + \cos \theta_e)$</td>
<td>$\frac{(\sum_i p_{z,i})^2 + (\sum_i p_{y,i})^2}{1 - y_{JB}}$</td>
</tr>
</tbody>
</table>

- Jet $E_T = [p_x^2 + p_y^2]^{1/2}$
- Jet $\eta = -\ln (\tan \theta/2)$ where $\theta = \tan^{-1}(E_T/p_z)$
- x_γ: Fraction of γ momentum involved in collision
 - Direct γp: $x_\gamma \sim 1$
 - Resolved γp: $x_\gamma < 1$
Rapidity Gap Topology

- Distance between leading and trailing jet centers of: $\Delta \eta$
- E_T^{Gap}: Total E_T of jets between leading and trailing jet centers
- Gap Event has small energy in Gap: $E_T^{\text{Gap}} < E_T^{\text{Cut}}$
- Gap definition based on E_T better than that based on multiplicity
 - Collinear and infrared safe
 - Gap spans between centers of leading & trailing jets (increased statistics)
Monte Carlo Tuning

- Modified Default ZEUS MC parameters
 - Tuning based on JetWeb parameters (Global fit to collider data)
 - Tuned p_T^{Min} to ZEUS E_T^{GAP} distributions

- Tuned PYTHIA 6.1
 - Proton PDF: CTEQ 5L (Set 46)
 - Photon PDF: SaS-G 2D
 - $p_T^{\text{Min} 1} = 1.9$, $p_T^{\text{Min} 2} = 1.7$ (default 2.0 GeV, 1.5 GeV)

- Tuned HERWIG 6.1
 - Proton PDF: CTEQ 5L (Set 46)
 - Photon PDF SaS-G 2D
 - Square of factor to reduce proton radius: 3.0 (default 1.0)
 - Probability of Soft Underlying Event: 0.03 (default 1.0)
 - $p_T^{\text{MIN} 1} = 2.7$ GeV (default 1.8 GeV)
Acceptance Correction
Direct + Resolved MC

- Correct data for acceptance: Detector \rightarrow Hadron level
- Dir & Res relative amounts fit to Data: x^{OBS} distribution
- PYTHIA – Detector Level
 - 28% Direct
 - 72% Resolved
- HERWIG – Detector Level
 - 44% Direct
 - 56% Resolved
- Non-Color-Singlet (NCS)
 - Direct and Resolved only
Acceptance Correction
Direct + Resolved + Color Singlet

- Correct data for acceptance: Detector → Hadron level
- NCS & CS relative amounts fit to Data: \(E_{\text{TOT}} \) for \(E_T^{\text{GAP}} < 1.5 \text{ GeV} \)

- For Inclusive Sample
 - PYTHIA – Detector Level
 - 96% NCS
 - 4% CS
 - HERWIG – Detector Level
 - 94% NCS
 - 6% CS

- Compare to other methods
 - Fit to Num Jets for \(E_T^{\text{GAP}} < 1.5 \text{ GeV} \)
 - Hadron level \(E_T^{\text{GAP}} \)
 - Similar results

![Graph showing fit of HERWIG to \(E_{\text{TOT}} \) for \(E_T^{\text{GAP}} < 1.5 \text{ GeV} \)]
Rapidity Gap Event Selection

ZEUS 1996-97 Data (38 pb\(^{-1}\))

Trigger Selection:
- FLT, SLT, and TLT requirements to select dijet photoproduction events

Clean Photoproduction Sample:
- Reject events having good Electron with \(E_e > 5\) GeV AND \(y_e < 0.85\)
- \(\sum p_T / \sqrt{\sum E_T} < 2\) GeV\(^{1/2}\)
- \(|z_{vtx}| < 40\) cm
- \(0.2 < y_{JB} < 0.85\)

Dijets with Large Rapidity Separation:
- \(E_{T1,2} > 5.1, 4.25\) GeV (corresponds to \(E_{T1,2} > 6.0, 5.0\) GeV at hadron level)
- \(|\eta^{1,2}| < 2.4\)
- \(\frac{1}{2}|\eta^1 + \eta^2| < 0.75\)
- \(2.5 < |\eta^1 - \eta^2| < 4.0\) (Gap Definition)

4 Samples of Gap Events:
- \(E_T^{\text{CUT}} = 0.6, 1.2, 1.8, 2.4\) GeV (corr. to \(E_T^{\text{CUT}} = 0.5, 1.0, 1.5, 2.0\) at hadron level)

\(~70,000\) Events in Inclusive Sample
• PYTHIA describes the inclusive variables
• Addition of CS makes small improvement for inclusive variables
Gap Kinematic Variables

Data vs. PYTHIA \(E_T^{\text{CUT}} = 1 \text{GeV} \)

- PYTHIA describes the gap variables (\(E_T^{\text{CUT}} = 1 \ \text{GeV} \))
- Addition of CS makes substantial improvements

- **Detector Level**

```
- PYTHIA describes the gap variables (\( E_T^{\text{CUT}} = 1 \ \text{GeV} \))
- Addition of CS makes substantial improvements
```
Inclusive Kinematic Variables
Data vs. HERWIG

- HERWIG describes the inclusive variables
- Addition of CS makes small improvement for inclusive variables
Gap Kinematic Variables
Data vs. HERWIG $E_T^{CUT} = 1\text{GeV}$

- HERWIG describes the gap variables ($E_T^{CUT} = 1\text{ GeV}$)
- Addition of CS makes substantial improvements
Systematics

- Kinematic Cuts: +/- HERWIG Resolutions
- Amount of CS in unfolding varied by 25%
- CAL Energy Scale varied by 3%
- Difference in data corrected with PYT and HER

<table>
<thead>
<tr>
<th>Variable</th>
<th>+/- Change</th>
<th>Variable</th>
<th>+/- Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>$E_T^{1,2}$</td>
<td>13%</td>
<td>$\eta^{1,2}$</td>
<td>2%</td>
</tr>
<tr>
<td>$\frac{1}{2}</td>
<td>\eta^1+\eta^2</td>
<td>$</td>
<td>9%</td>
</tr>
<tr>
<td>y_{JB}</td>
<td>5%</td>
<td>$p_T^{\text{Miss}}/\sqrt{E_T}$</td>
<td>10%</td>
</tr>
<tr>
<td>y_e</td>
<td>6%</td>
<td>Z_{vtx}</td>
<td>25%</td>
</tr>
<tr>
<td>E_T^{Cut}</td>
<td>36%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Same systematics used for all bins
- Systematic variation in cross section dependent on E_T^{Gap}, $\Delta \eta$, W, and x_{γ}^{OBS} bins
Cross Section Systematics
Unfolded with HERWIG

Patrick Ryan, Univ. of Wisconsin

Order of Systematics (left to right in each bin)

Patrick Ryan, Univ. of Wisconsin
Rapidity Gaps Between Jets in PHP
SMU Seminar, April 10, 2006 - 29
Cross Sections
Unfolded with PYT & HER

- Data unfolded separately with PYT & HER
- NCS MC fit to data in E_T^{GAP} cross section
- CS MC added by fitting NCS+CS to E_T^{GAP}
 - Addition of CS maximizes agreement with Data for PYT and HER

~3% CS for PYT and HER
Acceptance Corrected Data vs MC
E_T^{Gap} and $\Delta \eta$ Cross Sections

- Data acceptance corrected with average of PYT & HER
- MCs fit to average of corrected data yield Scale Factors
 - HER: $1.01\times NCS + 1.32\times CS$ PYT: $1.25\times NCS + 404\times CS$
 - High CS scale factor in PYTHIA because High-t γ not a real physical model
 - Addition of CS maximizes agreement with Data for PYT and HER
Adding \(\Delta \eta \) for Different Gap Fractions
Unfolded with AVG of PYT & HER

- Adding \(\sim 3\% \) CS maximizes agreement with data for entire \(x_\gamma^{\text{OBS}} \) region
- Adding 1-2\% CS maximizes agreement with data for resolved region
 - Resolved region should allow comparisons with Tevatron (1-1.5\% CS)
W for Different Gap Fractions
Unfolded with AVG of PYT & HER

For All x^OBS_γ

- $E_T^{\text{GAP}} < 0.5 \text{ GeV}$
- $E_T^{\text{GAP}} < 1.0 \text{ GeV}$
- $E_T^{\text{GAP}} < 1.5 \text{ GeV}$

For $x^\text{OBS}_\gamma < 0.75$

- $E_T^{\text{GAP}} < 0.5 \text{ GeV}$
- $E_T^{\text{GAP}} < 1.0 \text{ GeV}$
- $E_T^{\text{GAP}} < 1.5 \text{ GeV}$

For Resolved

- $E_T^{\text{GAP}} < 0.5 \text{ GeV}$
- $E_T^{\text{GAP}} < 1.0 \text{ GeV}$
- $E_T^{\text{GAP}} < 1.5 \text{ GeV}$

- 3% CS maximizes agreement with Data for PYT & HER total x^OBS_γ
- $1-2\%$ CS maximizes agreement with Data for resolved region
- Disagreement at low W for All x^OBS_γ sample
\[x_{\gamma}^{\text{OBS}} = \sum_{\text{jets}} E_T e^{-\eta} \]

\[x_{\gamma} = \frac{\sum E_T e^{-\eta}}{2 y E_e} \]

- Adding \~3% CS maximizes agreement with data for PYT & HER
- HERWIG agreement remains better than PYTHIA agreement
- PYTHIA agreement in resolved region improved compared to $\Delta \eta$

Resolved enhanced region:
\[x_{\gamma}^{\text{OBS}} < 0.75 \]
Should allow comparison to Tevatron
Comparisons to Previous ZEUS Measurement

ZEUS 1995

Gap defined by multiplicity (not E_T)

$f(\Delta \eta) = 0.11$ for $3.5 < \Delta \eta < 4.0$

1-4% CS from 2-4 in $\Delta \eta$

Data consistent

$E_T^{GAP} < 1.5$ GeV closest to previous results

Patrick Ryan, Univ. of Wisconsin Rapidity Gaps Between Jets in PHP SMU Seminar, April 10, 2006 - 35
Comparison to H1 Measurement

- **Gap Fraction for** $E_T^{Gap} < 1.0$ GeV
 - Excess of data when compared to NCS MC
 - Data described by NCS+CS MC
 - Consistent with ZEUS within errors
 - 6.6 pb$^{-1}$ of Lumi

![Graph showing comparison to H1 Measurement](image)
Rapidity Gap Between Jets

Summary

• Conclusions
 • Evidence of ~3% Color-Singlet Exchange
 • 1-2% Color-Singlet Exchange in resolved region
 • PYTHIA and HERWIG without CS MC is below data
 • Addition of CS MC gives agreement with data
 • $E_T^{\text{Gap}}, \Delta \eta, W,$ and x_γ^{OBS} cross sections and gap fractions well described
 • ZEUS and H1 Data agree within errors

• In Progress
 • Examine W dependence
 • Explore comparisons with Tevatron
- Purity: \((\text{Detector} \&\& \text{Generator})_i / (\text{Detector})_i\)
- Efficiency: \((\text{Detector} \&\& \text{Generator})_i / (\text{Generator})_i\)
- Correction Factor: \((\text{Generator} / \text{Detector})_i = (\text{Purity} / \text{Efficiency})_i\)
- Stability: \((\text{Detector} \&\& \text{Generator})_i / \text{Reconstructed in any bin}\)
Purities and Efficiencies

\[\Delta \eta \]

PYTHIA

\begin{align*}
\text{Purity} & \quad 0.4 \quad 0.3 \quad 0.2 \quad 0.1 \quad 0.05 \quad 0.01 \\
\Delta \eta & \quad 2.5 \quad 3 \quad 3.5 \quad 4
\end{align*}

\begin{align*}
\text{Efficiency} & \quad 0.35 \quad 0.3 \quad 0.25 \quad 0.2 \quad 0.15 \quad 0.1 \quad 0.05 \quad 0.01 \\
\Delta \eta & \quad 2.5 \quad 3 \quad 3.5 \quad 4
\end{align*}

\begin{align*}
\text{Stability} & \quad 1.2 \quad 1 \quad 0.8 \quad 0.6 \quad 0.4 \quad 0.2 \quad 0.1 \quad 0.05 \quad 0.01 \\
\Delta \eta & \quad 2.5 \quad 3 \quad 3.5 \quad 4
\end{align*}

\begin{align*}
\text{Corr Factor} & \quad 4 \quad 3 \quad 2 \quad 1
\end{align*}

HERWIG

\begin{align*}
\text{Purity} & \quad 0.4 \quad 0.3 \quad 0.2 \quad 0.1 \quad 0.05 \quad 0.01 \\
\Delta \eta & \quad 2.5 \quad 3 \quad 3.5 \quad 4
\end{align*}

\begin{align*}
\text{Efficiency} & \quad 0.35 \quad 0.3 \quad 0.25 \quad 0.2 \quad 0.15 \quad 0.1 \quad 0.05 \quad 0.01 \\
\Delta \eta & \quad 2.5 \quad 3 \quad 3.5 \quad 4
\end{align*}

\begin{align*}
\text{Stability} & \quad 1.2 \quad 1 \quad 0.8 \quad 0.6 \quad 0.4 \quad 0.2 \quad 0.1 \quad 0.05 \quad 0.01 \\
\Delta \eta & \quad 2.5 \quad 3 \quad 3.5 \quad 4
\end{align*}

\begin{align*}
\text{Corr Factor} & \quad 4 \quad 3 \quad 2 \quad 1
\end{align*}

- Purity: \((\text{Detector} \&\& \text{Generator})_i / (\text{Detector})_i\)
- Efficiency: \((\text{Detector} \&\& \text{Generator})_i / (\text{Generator})_i\)
- Correction Factor: \((\text{Generator} / \text{Detector})_i = (\text{Purity} / \text{Efficiency})_i\)
- Stability: \((\text{Detector} \&\& \text{Generator})_i / \text{Reconstructed in any bin}\)

i: Bin i